• Title/Summary/Keyword: 직교배열실험

Search Result 141, Processing Time 0.022 seconds

Design of a Dual-Frequency Microstrip Patch Antenna (이중 공진형 마이크로스트립 패치 안테나 설계)

  • 김규성;김태우;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1131-1137
    • /
    • 1999
  • In this paper, a novel design method of an apertured coupled microstrip patch antenna with the single feeding structure is proposed for dual resonance frequencies with mutually perpendicular polarizations. The characteristics of this antenna are experimentally investigated. In order to achieve this goal, a new type of square patch with double notches is used as a radiator and the crossed slot and the bended mictrostrip feeder are adopted for the dual polarizations in the aperture-coupled structure. For the application of the proposed antenna, a Ku-band Tx/Rx $2\times$ subarray antenna is designed and manufactured. Also, the applicability of the antenna as a ground terminal is examined through performance analysis. According to the measurement, the gain of the antenna is 10dBi at the center frequencies of Tx and Rx, the side lobe level is lower than -13dB, and the cross polarization lebel is below 17 dB.

  • PDF

Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method (아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화)

  • Lee, Seo Young;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.487-492
    • /
    • 2019
  • Nano flexible vesicles encapsulating an adenosine, an active ingredient for anti-wrinkle, were prepared for the transdermal delivery. The nano flexible vesicle is usually composed of phospholipid, ethanol, and lysolecithin, which is a type of liquid crystalline one made by dispersing the liquid crystalline phase formed through a hydration process into a water phase. In this study, the Taguchi method, one of the experimental design methods, was applied to investigate the factors affecting the vesicle droplet size. Signal to noise (S/N) ratios for the smaller the better characteristics of vesicle droplet size were calculated using the Taguchi orthogonal array. The composition of ethanol and lysolecithin in the vesicle constituents and the amount of aqueous solution added in the hydration process were main factors that had a great effect on the vesicle droplet size and ANOVA test showed that these factors were significant at 95% confidence level.

Discrete element analysis for design modification of leveling blade on motor grader vehicle (모터 그레이더 평탄작업용 블레이드의 설계개선을 위한 개별요소법 해석)

  • Song, Chang-Heon;Oh, Joo-Young;Cho, Jung-Woo;Kim, Mun-Gyu;Seok, Jeong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.423-438
    • /
    • 2021
  • The blade of motor grader is used for scattering and leveling the aggregates on the foundation of road construction site. The paper performed a design improvement research of the blade part to enhance the working efficiency of motor graders. The scattering works of aggregates by blade driving were simulated by DEM (discrete element method) of a dynamic code. The four design parameters were selected and a specific leveling scenario for the simulation was determined. The nine blade models were numerically experimented, and the sensitivity of each factors was analyzed. Next, the design factors that influence a blade performance have been selected by ANOVA, and these key design factors were applied to the progressive quadratic response surface method (PQRSM). The optimum set of design factors of the blade was finally proposed.

Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe (서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계)

  • Lee, Sang-Beom;Lee, Hyuk-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.646-652
    • /
    • 2009
  • In this paper, welding pitch optimization technique of vehicle subframe is presented considering the fatigue life of spot welding nuggets. Fatigue life of spot welding nuggets is estimated by using the frequency-domain fatigue analysis technique. The input data, which are used in the fatigue analysis, are obtained by performing the dynamic analysis of vehicle model passing through the Belgian road profile and also the modal frequency response analysis of finite element model of vehicle subframe. According to the fatigue life result obtained from the frequency-domain fatigue analysis, the design points to optimize the weld pitch distance are determined. For obtaining the welding pitch combination to maximize the fatigue life of the spot welding nuggets, 4-factor, 3-level orthogonal array experimental design is used. This study shows that the optimized subframe improves the fatigue life of welding nugget with minimum fatigue life about 65.8 % as compared with the baseline design.

Optimal Nozzle Design of Bladeless Fan Using Design of Experiments (실험계획법을 이용한 날개 없는 선풍기의 노즐 형상 최적 설계)

  • Jeong, Siyoung;Lee, Jongsoo;Yoon, Jaehyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.711-719
    • /
    • 2017
  • Bladeless fan is becoming increasingly popular owing to its advantages, such as improved safety, easy to clean, and attractive shape. However, many people are reluctant to purchase it because of several disadvantages, such as noise and moderate wind; therefore, research on how improve wind generation without increasing the motor speed is required. This study investigates the optimization of the shape of the nozzle and nearby surface using CFD (Computational Fluid Dynamics) simulation, ANSYS fluent. The results are analyzed by ANOM (analysis of mean) and interaction analysis; therefore this study suggests the variables of affecting Coanda effect and satisfy the govern equation, the conservation of momentum. The optimal combination was found through a predictive equation. In this study, factors and levels that affect the mass flow rate were selected and experimental points were arranged using the orthogonal array table. The value of the mass flow rate was confirmed by ANSYS fluent, which is a CFD program. Through the ANOM, it was confirmed that the nozzle distance is the most influential parameter affecting the mass flow rate. Furthermore, the mass flow rate obtained from the predictive equation and the mass flow rate from the CFD correspond to the largest values. Results from this study confirmed that the mass flow rate is increased by a change in the shape, even if the motor speed did not increase.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.

Sensitivity Study on the Infra-Red Signature of Naval Ship According to the Composition Ratio of Exhaust Plume (폐기가스 조성 비율이 적외선 신호에 미치는 영향 연구)

  • Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Infrared signatures emitted from naval ships are mainly classified into internal signatures generated by the internal combustion engine of the ship and external signatures generated from the surface of the ship heated by solar heat. The internal signatures are also affected by the chemical components ($CO_2$, $H_2O$, CO and soot) of the exhaust plumes generated by the gas turbine and diesel engine, which constitute the main propulsion system. Therefore, in this study, the chemical composition ratios of the exhaust plumes generated by the gas turbines and diesel engines installed in domestic naval ships were examined to identify the chemical components and their levels. The influence of the chemical components of the exhaust plumes and their ratios on the infrared signatures of a naval ship was investigated using orthogonal arrays. The infrared signature intensity of the exhaust plumes calculated using infrared signature analysis software was converted to the signal-to-noise ratio to facilitate the analysis. The signature analysis showed that $CO_2$, soot and $H_2O$ are the major components influencing the mid-wave infrared signatures of both the gas turbine and diesel engine. In addition, it was confirmed that $H_2O$ and $CO_2$ are the major components influencing the long-wave infrared signatures.

Process Optimization for Reduction of Waste Acids of Electropolishing Solution using Round Bus Bar (구형 부스바를 이용한 전해연마액의 폐산 폐기물 감소를 위한 공정 최적화)

  • Kim, Soo Han;Cho, Jaehoon;Park, Chulhwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.722-727
    • /
    • 2016
  • In this study, we attempted to reduce the generation of waste acids in the electropolishing process by improving the current efficiency. The optimum conditions of the electropolishing process when using the round bus bar were determined by the Taguchi method. The current density, polishing time, electrolyte temperature and flow rate were selected as the control factors for the current efficiency in the electropolishing process. An orthogonal array was created by considering three levels for each factor and experiments were carried out. The larger-the-better SN ratios were calculated by the Taguchi method. The current density was the most important factor affecting the current efficiency and the polishing time was the least important one. The optimum conditions to minimize the generation of waste acids were a current density of $45A/dm^2$, polishing time of 4 min, electrolyte temperature of $65^{\circ}C$ and flow rate of 7 L/min. The results of the ANOVA confirmed that the effects of the current density, electrolyte temperature and flow rate are significant at the 95% confidence level. The increase in the contact area and contact force afforded by using the round bus bar improved the current efficiency which, in turn, reduced the amount of waste acids generated. Further research is planned to investigate the effect of the type of bus bar on the current efficiency.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.