• Title/Summary/Keyword: 지형 참조 항법

Search Result 17, Processing Time 0.019 seconds

Gravity modeling and application to the gravity referenced navigation (중력모델링과 중력참조항법에의 적용)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Yu, Myeong-Jong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The gravity anomaly is a basic geophysical data applied in various fields such as geophysics, geodesy and national defense. In general, the gravity anomaly is used through a interpolation process based on the constructed database. The gravity variation, however, is appeared in various shapes depending on the topography and the density of the underground structures. Therefore, the interpolation could lead to a large differences if the gravity fields do not satisfy the assumptions on the signal behavior like linear or a certain degree polynomials. Furthermore, the interpolation does not reflect the physical characteristics of the gravity such as the harmonic condition. In this study, the gravity modeling using the plane Fourier series and radial basis functions are performed to overcome the problems in the usual interpolation. The results of the modeling is analyzed for the case of the gravity referenced navigation focused on the signal characteristics. Based on the study, it was found that the results from modeling are not much different to that from the interpolation in a smoothly varied area. In case of the highly varied area, however, a large differences are appeared among the three methods. Especially, the Fourier series shows the most smooth variations in the modeled gravity values while the highest variations appeared in the interpolation. Applying to the gravity referenced navigation, it was found that the modeling is more effective in calculation cost. It is considered that the results from this study provides a basis on effective modeling of the gravity fields in terms of the signal characteristics and resolution for various application fields.

Profile-based TRN/INS Integration Algorithm Considering Terrain Roughness (지형 험준도를 고려한 프로파일 기반 지형참조항법과 관성항법의 결합 알고리즘)

  • Yoo, Young Min;Lee, Sun Min;Kwon, Jay Hyun;Yu, Myeong Jong;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • In recent years alternative navigation system such as a DBRN (Data-Base Referenced Navigation) system using geophysical information is getting attention in the military navigation systems in advanced countries. Specifically TRN (Terrain Referenced Navigation) algorithm research is important because TRN system is a practical DBRN application in South Korea at present time. This paper presents an integrated navigation algorithm that combines a linear profile-based TRN and INS (Inertial Navigation System). We propose a correlation analysis method between TRN performance and terrain roughness index. Then we propose a conditional position update scheme that utilizes the position output of the conventional linear profile type TRN depending on the terrain roughness index. Performance of the proposed algorithm is verified through Monte Carlo computer simulations using the actual terrain database. The results show that the TRN/INS integrated algorithm, even when the initial INS error is present, overcomes the shortcomings of linear profile-based TRN and improves navigation performance.

Terrain reference navigation algorithm based on cross-correlation matching using topography characteristics (지형의 특성을 이용한 상호상관정합 기반 지형참조항법 알고리즘)

  • Lee, Bo-Mi;Kwon, Jay-Hyoun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.161-164
    • /
    • 2010
  • The study on terrain referenced navigation has been proceeded from 1940s in advanced country with the object of military. In this study, the analysis regarding algorithm developed using cross-correlation matching algorithm and extended Kalman filter and simulation will be introduced. As a result, the standard deviation of position error from cross-correlation matching algorithm has been calculated 34.3m. It meant that the result has stable accuracy on the navigation. However, further study on terrain referenced navigation based on analysis of various topographic characteristics should be performed.

  • PDF

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Terrain-referenced Underwater Navigation using Rao-Blackwellized Particle Filter (라오-블랙웰라이즈드 입자필터를 이용한 지형참조 수중항법)

  • Kim, Taeyun;Kim, Jinwhan;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.682-687
    • /
    • 2013
  • Navigation is a crucial capability for all types of manned or unmanned vehicles. However, vehicle navigation in underwater environments still remains a challenging problem since GPS signals for position fixes are not available in the water. Terrain-referenced underwater navigation is an alternative navigation technique that utilizes geometric information of the subsea terrain to correct drift errors due to dead-reckoning or inertial navigation. Terrain-referenced navigation requires the description of an undulating terrain surface as a mathematical function or table, which often leads to a highly nonlinear estimation problem. Recently, PFs (Particle Filters), which do not require any restrictive assumptions about the system dynamics and uncertainty distributions, have been widely used for nonlinear filtering applications. However, PF has considerable computational requirements which used to limit its applicability to problems of relatively low state dimensions. This study proposes the use of a Rao-Blackwellized particle filter that is computationally more efficient than the standard PF for terrain-referenced underwater navigation involving a moderate number of states, and its performance is compared with that of the extended Kalman filter algorithm. The validity and feasibility of the proposed algorithm is demonstrated through numerical simulations.

Terrain Referenced Navigation for Autonomous Underwater Vehicles (자율무인잠수정의 지형참조항법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kwon, Jayhyun;Yu, Myeongjong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.

Performance Improvement of TRN Batch Processing Using the Slope Profile (기울기 프로파일을 이용한 일괄처리 방식 지형참조항법의 성능 개선)

  • Lee, Sun-Min;Yoo, Young-Min;Lee, Won-Hee;Lee, Dal-Ho;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.384-390
    • /
    • 2012
  • In this paper, we analyzed the navigation error of TERCOM (TErrain COntour Matching), which is TRN (Terrain Referenced Navigation) batch processing, caused by scale factor error of radar altimeter and proved the possibility of false position fix when we use the TERCOM's feature matching algorithm. Based on these, we proposed the new TRN batch processing algorithm using the slope measurements of terrain. The proposed technique measures on periodic changes in the slope of the terrain elevation profile, and these measurements are used in the feature matching algorithm. By using the slope of terrain data, the impact of scale factor errors can be compensated. By simulation, we verified improved outcome using this approach compared to the result using the conventional method.