• Title/Summary/Keyword: 지형회피

Search Result 37, Processing Time 0.022 seconds

A Study on the Algorithm for Automatic Generation of Optimal Waypoint with Terrain Avoidance (지형 회피를 위한 최적 경로점 자동 생성 알고리듬 연구)

  • Park, Jung-Jin;Park, Sang-Hyuk;Ryoo, Chang-Kyung;Shin, Sung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1104-1111
    • /
    • 2009
  • In the low altitude, mission of the aircraft is restricted by a variety of threats such as anti-air missiles and terrain obstacles. Especially, aircraft have always a risk of ground collision near terrain. In this study, to effectively solve this problem, we developed the flight path generation algorithm that is considered the terrain avoidance. In this flight path generation algorithm, waypoints that should be passed by the UAV are selected first. The waypoints are located in the middle of the terrain obstacles. Then, physically meaningful waypoints sets are classified by Dijkstra algorithm. The optimal waypoint guidance law based on the optimal control theory is applied to produce trajectory candidates. And finally the minimum control energy trajectory is determined.

A Study on Algorithm for Aircraft Collision Avoidance Warning (항공기 충돌 회피 경고 알고리듬 연구)

  • Jung, Myung-Jin;Jang, Se-Ah;Choi, Kee-Young;Kim, Jin-Bok;Yang, Kyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.515-522
    • /
    • 2012
  • CFIT(Controlled Flight Into Terrain) is one of the major causes of aircraft accidents. In order to solve this problem, GPWS(Ground Proximity Warning System) is used to generate terrain collision warning using the distance between the aircraft and the underneath ground. Since the GPWS uses the vertical clearance only, it frequently generates false warnings. In this study, a terrain/obstacle collision avoidance warning algorithm was developed for fast flying and highly maneuvering fighters using the flight status and the geographic information. This algorithm condsiders the overall delay in the aircraft reactive motion including the pilot's reaction time. The paper presents a detailed logic and test methods.

A Study on the Countermeasures against the Threats of Small-Scale Inertia Using the M&S (M&S를 활용한 북 소형무인기 위협에 대한 대응방안 연구)

  • Kim, Sea Ill;Shin, Jin
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2020
  • Due to the lack of a system that can detect/identify and strike North Korea's small unmanned aerial vehicles, no immediate response was made. In order to solve the problem of response, we should prepare for threats by developing weapons systems that can be immediately hit when identifying small-sized unmanned aerial vehicle detection radar and creating specialized research organizations for research and development of equipment.

A Dynamic Path-Finding Method Avoiding Moving Obstacles in 3D Game Environment (3D게임에서 이동 장애물을 고려한 동적 경로 탐색 기법)

  • Kwon, Oh-Ik;WhangBo, Teag-Keun
    • Journal of Korea Game Society
    • /
    • v.6 no.3
    • /
    • pp.3-12
    • /
    • 2006
  • Path-finding, one of the traditional Game A.I. problems, becomes an important issue to make games more realistic. Due to the limited resources in the computer system, path-finding systems sometimes produce a simplified and unrealistic path. The most relent researches have been focused on the path-finding avoiding only static obstacles. Various moving obstacles are however deployed in real games, a method avoiding those obstacles and producing a smooth path is necessary. In this paper, navigation mesh is used to represent 3D space and its topological characteristics are used for path-finding. Intellectual repulser and attractor are also used to avoid moving obstacles and to find an optimal path. We have evaluated the path produced by the method proposed in this paper and verified its usability in real game.

  • PDF

The Collision Avoidance with Interaction Technique between Objects in Virtual Space (가상공간상의 객체 간 상호작용기법을 이용한 충돌 회피)

  • Ryu, NamHoon;Ban, KyeongJin;Oh, KyeongSug;Song, SeungHeon;Kim, EungKon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.19-23
    • /
    • 2008
  • The development of computer graphics techniques came after development of various entertainment industry such as movies, game and so on, and techniques that make diverse objects in virtual space and control the action of objects are growing rapidly. Especially objects(characters) play an important role in encouraging virtual space at computer animation field. If lots of objects are animated in virtual space, undesired matters of fixed topography or collision between objects etc occur. In order to solve this problem, we need control techniques in detail. This paper presents and implements collision evasion with submarine topography in a virtual aquarium and control technique about collision evasion with other objects.

  • PDF

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

TRN을 이용하는 헬리콥터 3차원 GPS 항법의 실용화 알고리즘 연구

  • Kim, Eui-Hong;Jeon, Hyeong-Yong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.249-250
    • /
    • 2008
  • 본 연구는 전년도 지형참조항법(TRN; Terrain Referenced Navigation)에 근거하는 3-D 헬리콥터 항법 시스템을 위한 알고리즘 개발의 후속 연구로서 실용적 완성을 위해 수행되었다. 본 연구에서 헬리콥터의 위성항법장치(GPS)로부터의 정보(X,Y,Z 좌표)는 자동차가 도로주행중 매 1초 간격으로 수신되는 GPGGA Code로 대체되었다. 비행체는 3차원 직교 좌표 체계(Cartesian coordinate system)로 표현되는 수치지형모델(DTM; Digital Terrain Model)상에서 시점(Origination)-종점(Destination) 분석 기법에 의해 항로를 결정한다. 본 시스템은 우선 조종사에게 지형의 사전 인식을 위해 시점-종점 주변 3차원 지형도와 항로의 종단면도를 보여준다. 본 시스템은 직접적인 지상 충돌을 피하기 위해 지형 여유 층면(Terrain Clearance Floor)의 개념을 도입, 기복 지형 표면에 일정 높이의 완충 공간을 설정한다. 본 시스템은 매초 GPS로부터 실시간 수신되는 X,Y,Z 위치와 DTM상의 x,y,z를 비교하여 만약 비행체가 완충 공간에 접근하게 되면 즉시 경고음과 메시지를 발한다. 수치지형모델은 (주)첨성대가 확보하고 있는 3초 간격의 DTM을 채택, 작성하였다.

  • PDF

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.

Robot that can be driven on irregular roads with tracking and obstacl avoidance functions (회피 기능을 가진 장애물 극복 추종 주행 로봇)

  • Sung-Eun Kim;Ji-Eun Ahn;Seo-Hyun Park;Da-Yea Jeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1041-1042
    • /
    • 2023
  • 본 논문에서는 고르지 않은 도로에서 사용자를 인식하고 따라다니며, 적재물을 안정적으로 운반하는 로봇을 제안합니다. 기존의 바퀴 구동 방식은 계단이나 울퉁불퉁한 지형에 부딪혔을 때 주행이 제한적입니다. 이를 해결하기 위해 저희는 로커-보기(rocker-bogie) 메커니즘을 적용했습니다. 비전을 통해 사용자를 특정하고, 크기에 따라 속도를 조절하며 추종합니다. 라이다는 주변의 장애물을 감지, 회피, 주행하는 데 사용되었으며, 가속도센서와 리니어 모터를 사용하여 밸런싱 기능을 구현했습니다.