• Title/Summary/Keyword: 지향성안테나

Search Result 204, Processing Time 0.034 seconds

A Study on Radiator of VHF-Band Active Electronically Scanned Array with the Trapezoidal Dipole Structure Using Meander-Line (미엔더 라인을 이용한 사다리꼴 다이폴 구조의 VHF 대역 능동 위상 배열안테나 복사소자 연구)

  • Park, Dae-Sung;Ko, Young-Kwan;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this paper, the method to miniaturize the radiating element of a VHF-band active electronically scanned array is proposed. The length of the proposed dipole having trapezoidal shape structure is miniaturized using meander line while the performance degradation is minimized. The grid reflector is used to improve the antenna directivity and insensitivity due to the outer environment. In addition, the antenna is designed to take into account for array application. The fabricated antenna has a 9.1 % fractional bandwidth for the voltage standing wave ratio(VSWR) 2:1 and the maximum gain of 4.24 dBi. The front-to-back ratio(FBR) is larger than 15 dB.

Design of High Sensitive Broadband Tag Antenna for RFID System in UHF Band (UHF 대역 RFID 시스템용 고감도 광대역 태그 안테나의 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • This paper presents the design of high sensitive/broadband tag antenna for Radio Frequency Identification (RFID) in Ultra High Frequency(UHF) band. A proposed tag antenna size is $60\;mm\;{\times}\;10\;mm\;{\times}\;1\;mm$. The resonant frequency is 910MHz and bandwidth is about 900 MHz at -10 dB below. The measured return loss and directional pattern have been confirmed a good agreement with the calculation results. The read range of proposed tag antenna with chip is observed about 6.5 m and proposed tag antenna has been observed an average 0.5 m for more than read range of the commercial tag antenna.

Improvement of Short Range Performance of Meteor Burst Path with Buried Antenna (지하 매설형 안테나를 이용한 근거리 유성 버스트 통신의 특성개선)

  • 김병철;김기채;이무영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.788-801
    • /
    • 1998
  • Meteor Burst Communication can provide effective and economical means of communication where long distance VHF NLOS data transmission is needed ; often ranges more than 1000 km. It has been, however, so far considered unsuitable for short distance application because of phenomenal decrease in burst durations, which leads to decreation of total duty rate of the system. This paper extensively analyzes characteristics of shot distance MB(Meteor Burst) path and shows the low duty rate may be improved by increasing burst rate through adapting antennal beam width to cover entire hot-spot region in the space and, by compensating effective burst length throughcutting down man-made noises introduced by antennal. Based on the analysis, we are developed a small-opening-cavity antennal, especially designed for short distance MB path. In operation, the antenna is to be buried under ground surface so as to improve directivity and reduces noise introduction. The antennal exhibits power gain of 3 dB with 90 degree beam width and thus enables to illuminate entire hot-spot regions with the elevation angle of 8-90 degree which is the case of transmission less than 100 km. Directivity horizontal to earth surface is suppressed to minimum which enables to cut man-made noises from near-by sources down to more than 3 dB from the level reported with conventional 4 element Yagi. A series of experiments performed on 100km MB paths have conformed that, with the antenna installed at receiving site, the burst rate and duration time have been noticed to increase by 10 and 20 percent respectively from the values obtained by conventional 4-element Yagi antennal under same testing condition.

  • PDF

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

Radiation Characteristics of Cross Monopole Antennas with Folded Short Stub (폴디드 단락 스터브를 갖는 십자형 모노폴 안테나의 복사 특성)

  • Lim, Seong-Bin;Seong, Won-Mo;Park, Yong-Uk;Choi, Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.233-240
    • /
    • 2007
  • In this paper, the broadband cross monopole antenna is presented and the radiation characteristics are investigated. The presented broadband cross monopole antenna is composed of the cross monopole element and the folded short stub, which has a excellent band characteristics more than the existing cross monopole antenna. To conform the broadband characteristics of the presented antenna, the experimental antenna is designed, fabricated, and its radiation characteristics are measured in $1.75\sim2.655\;GHz$. It is shown that the designed antenna has the nondirectional pattern in the horizontal plane, the directional pattern in the vertical plane, VSWR less than 1.5, and gain in $2.17\sim4.87\;dBi$. From these results, the presented antenna is conformed as a broadband indoor antenna which can be used for PCS, WCDMA, Wibro, and satellite DMB band.

Analysis of Monopole Antenna Equipped with a Reflector for UWB Systems (UWB 시스템용 반사판을 갖는 모노폴 안테나 분석)

  • Kim, Yeong-Jin;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1261-1268
    • /
    • 2019
  • In this paper, we present the analysis of a novel monopole antenna with a reflector. The proposed monopole antenna is printed on a TRF-45 substrate, and the reflector, which is positioned near the base of the antenna, is printed on the FR-4 substrate. Positioning the reflector near the base of the antenna was found to suppress current radiation toward the back of the monopole antenna. Comparative analysis of the proposed monopole antenna and a conventional monopole antenna without a reflector revealed that the bandwidths of the antenna with and without a reflector were 2.65 GHz and 2.88 GHz, respectively. Additionally, the antenna without a reflector was observed to have a bi-directional radiation pattern in the E-plane, and an omni-directional radiation pattern in the H-plane. However, only the antenna with a reflector was found to suppress back radiation, and provide non-uniform directional radiation in the E-plane and H-plane.

Study on Rocket-Borne Antenna (비행체 탑재 안테나에 관한 연구)

  • 이호선;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.627-633
    • /
    • 2000
  • In this paper, new printed-type inverted F antenna is designed and fabricated to gain the ideal radiation pattern of a rocket-borne antenna which is expected to show the omni-directional pattern characteristic in rear direction. The radiation pattern of this antenna is measured in condition that the antenna is mounted on the side of the fin which is located on the tail of a rocket or a missile. Measurement result shows that the improved symmetrical radiation pattern is obtained with respect to the radiation pattern of the existing inverted F antenna. Besides parasite element which can be operated as reflector is attached in front of the antenna with the distance between the antenna and the parasite element $\lambda$/8. The result shows that the ratio of the front to the rear radiation level is improved by 8 dB.

  • PDF

Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method (진폭-위상 복합비교 기법과 상관형 위상비교 기법의 방향탐지 정확도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.195-201
    • /
    • 2016
  • In this paper, we present the direction finding accuracy of correlative interferometer method and amplitude-phase comparison method. Spiral antennas are used for amplitude-phase comparison method and blade antennas are used for correlative interferometer method. Those are made for uniform circular array (UCA) direction finding antenna systems. We simulate the accuracy of azimuth angle with 3 antennas UCA when SNR is 20 dB and baseline is 0.5 wave length. Correlative interferometer method has better accuracy than amplitude-phase comparison method.

Path Loss and Delay Characteristics According to Various Antennas at 2.45GHz in Subway Tunnel Environment (지하철 터널 환경에서 다양한 안테나에 따른 2.45GHz 대역의 경로손실 및 지연 특성)

  • Kong Min-Han;Park Noh-Joon;Kang Young-Jin;Song Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.162-168
    • /
    • 2006
  • Understanding of propagation characteristics is very important for the wireless communication system design and wireless communication service construction. In this paper, propagation characteristics is measured and analyzed at 2.45Ghz frequency band under curved subway tunnel environment. We constituted channel measurement system with sliding correlation and five different kind of antennas. The purpose of five different type of antennas is to compare propagation characteristics according to beam shape of antennas. The path loss under tunnel environment is average $4.38^{\sim}14.41dB$ lower than free space and circular polarization antenna marked smallest path loss. Also, path loss is smallest when the receiver antenna located outside of tunnel in th curved section. 90% of delay components of all antennas measured within 20ns and directional antenna has more wide coherence bandwidth than omni-directional antenna. According to measured result, when we consider path loss and delay characteristics, circular polarization antenna is most suitable under tunnel environment.

Design of Broadband Cross Monopole Antennas (광대역 십자형 모노폴 안테나의 설계)

  • Choi Hak-Keun;Seo Seung-Up
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.768-775
    • /
    • 2005
  • In this paper, the broadband cross monopole antenna is presented and the radiation characteristics is investigated f3r various width and height of the radiated element. In the presented antenna, the broadband characteristics is realized by the cross monopole element and the impedance matching section between the element and the ground. To conform the broadband characteristics of the presented antenna, the experimental antenna is designed, fabricated, and its radiation characteristics are measured in $1.75\~2.655$ GHz. It is shown that the designed antenna has the nondirectional pattern in the horizontal plane, the directional pattern in the vertical plane, VSSR less than 1.5, and gain in $2.5\~3.78$ dBi. From these results, the presented antenna is conformed as a broadband indoor antenna which can be used for PCS, WCDMA, Wibro, and satellite DMB band.