An investigation of a void and a loose layer of the ground is essential in order to prevent the losses of life and properties caused by subsidence and sinkage of the ground. Recently, studies on the ground penetrating radar survey have been actively conducted in order to estimate the void and the loose layer of the ground. However, an error can be committed by contrarily predicting a dense ground and a loose layer because the ground penetrating radar estimates an interface depth between geo-materials that have different electrical impedances. In this study, a loose ground depth is estimated using the characteristics of the reflected electromagnetic wave obtained from the ground penetrating radar survey. To gather the signals according to the loose ground depths, the ground penetrating radar survey is conducted on a field which underwent a huge ground settlement. In addition, the dynamic cone penetration test is performed to verify the result of the loose ground depth estimation from the ground penetrating radar survey. From the analysis of the reflection characteristics of the electromagnetic wave, a phase of an electromagnetic wave reflected from a denser soil layer is found to be identical with that of the first measured signal. On the other hand, a phase of an electromagnetic wave reflected from the loose soil layer is found to be opposed to that of the first detected signal. The comparison between the dynamic cone penetration index and electromagnetic signals by the ground penetrating radar shows that the estimated depth of the loose or dense layer is perfectly matched with a high reliability. The ground penetrating radar survey and the signal analysis performed in this study can be used not only for the survey of interface depth between the discontinuity layers but also for the estimation of the loose layer.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.4
/
pp.142-150
/
2006
In this study, GPR and lineament methods are used for the effective construction. GPR method is non-destructive testing to understand underground utility tunnel while lineament method is to understand locational environment. First, soil condition of the subject area is surveyed by location analysis. As the result of GPR survey, small-scale and large-scale of underground utility tunnel's location and scale were estimated. From the result of estimation, it is found that the main cause of underground utility tunnel's generation was not the effect of landslide or disturbed foundation from the excavation work but crack of shear & tension from the effect of fault movement which grew by insulation surroundings. From now on, this investigation method would be very useful in the survey and design stage on site for the effective construction and maintenance.
A complex seismic survey, which is nondestructive inspection, is used often recently in estimating the location of reclaimed cultural assets. Such a method is the best way to estimate the location of cultural assets most effectively in a short time at a construction site. This study estimated the reclamation location of a cultural asset by using magnetic gradient survey, earth resistivity survey, and ground penetrating radar survey (GPR) in order to figure out the distribution territory in the area with possibility of creation of reclaimed cultural assets in the past. As a result, it was located at +15m on the X axis and +90m on the Y axis on the floor plane coordinate of the study target area. It was shown that the major axis is about 20m long in the north-northeast direction and the width is about 5m. The depth of development distribution of anomaly zone was estimated as about 1.5~3.0m. Geophysical survey is expected to be used as a efficient and accurate way to excavate the reclaimed cultural assets in future.
Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.
A pulse radar system has been developed recently to detect dormant underground tunnels that are deeply located at depths of hundreds of metres. To check the ability of the radar system to detect an obliquely oriented tunnel, five different borehole pairs in the tunnel test site were chosen so that the horizontal lines-of-sight cut the tunnel axis obliquely, in $15^{\circ}$ steps. The pulse radar signatures were measured over a depth range of 20 m around the centre of the air-filled tunnel. Three canonical parameters, consisting of the arrival time, attenuation, and dispersion time were extracted from the first and second peaks of the measured radar signatures. Using those parameters, the radar system can detect obliquely oriented tunnels at various angles up to 45 from the transmitter-receiver line of sight.
Kim, Hyeong-Gi;Baek, Seung-Ho;Kim, Seung-Sep;Lee, Na Young;Kwon, Jang-Soon
Economic and Environmental Geology
/
v.50
no.6
/
pp.487-495
/
2017
A granite rock body, called 'Bukbawi', located on a mountaineering trail at Mt. Palgong Provincial Park is popular among the public because it resembles a percussion instrument. If someone hits the specific surface area of this rock body, people can hear drum-like sound. Such phenomenon may be geologically associated with exfoliation process of the granite body or miarolitic cavity developed after gasses escaped during formation of granite. To understand better the inner structure causing drum-like sound, we carried out a non-destructive ground-penetrating radar survey. In this study, as our primary target is very close to the surface, we utilized 1 GHz antennas to produce high-resolution near-surface images. In order to construct 3-D internal images, the measurements were conducted along a pre-defined grid. The processed radargrams revealed that the locations associated with 'drum' sound coincide with strong reflections. In addition, both reflection patterns of fracture and cavity were observed. To further quantify the observed reflections, we simulated GPR scans from a synthetic fracture in a granite body, filled with different materials. The simulated results suggest that both exfoliation process and miarolitic cavity may have contributed to the 'drum' phenomena. Furthermore, the radargrams showed a well-developed cavity signature where two major reflection planes were crossed. Thus, our study is an example of non-destructive geophysical studies that can promote Earth Science in the broader community by examining geological structures attracting the public.
Proceedings of the Korean Society of Soil and Groundwater Environment Conference
/
2002.04a
/
pp.299-302
/
2002
침하지반의 지하구조 해석을 위한 방법으로 전기비저항, 지하투과레이더, 굴절법 탄성파탐사를 실시하였다. 침하가 발생한 지점을 중심으로 조사를 실시하여 보강을 위한 경계를 설정하였으며 그라우팅 보강공사가 이후에 재차 시행되었다. 지반의 침하는 원지반 상부 연약지반에서 발생하였으며 침하량은 최대 50cm 정도이다. 침하의 원인은 해수 유입에 따근 지지력의 감소가 주된 원인으로 추정되며 보강공사 후 상부 연약지반의 전기비저항은 원지반과 거의 같은 크기를 보여준다.
Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Lee, Jin Wook;Hong, Won-Taek
The Journal of Engineering Geology
/
v.27
no.3
/
pp.217-231
/
2017
The subsidence of ground in urban area can be caused by the occurrence of the cavity and the change in ground volumetric water content. The objective of this study is the detection of abnormal area of ground in urban area where the cavity or the change in ground volumetric water content is occurred by the ground penetrating radar signal. GPR survey is carried out on the test bed with a circular buried object. From the GPR survey, the signals filtered by the bandpass filtering are measured, and the methods consisting of gain function, time zero, background removal, deconvolution and display gain are applied to the filtered signals. As a result of application of the signal processing methods, the polarity of signal corresponds with the relation of electrical impedance of the cavity and the ground in test bed. In addition, the relative permittivity calculated by GPR signal is compared with that of predicted by volumetric water content of the test bed. The relative permittivities obtained from two different methods show similar values. Therefore, the abnormal area where the change in ground volumetric water content is occurred can be detected from the results of the GPR survey in case the depth of underground utilities is known. Signal processing methods and estimation of relative permittivity performed in this study may be effectively used to detect the abnormal area of ground in urban area.
Underground buried cables can cause disconnections during the construction of roads and other subterranean structures due to uncertain designs. This paper describes experiments conducted to detect and verify the locations of these cables utilizing ground penetrating radar (GPR). The experiments were carried out at an active road construction site, where cable burial was anticipated. The GPR used operated within a frequency range of 400 MHz to 900 MHz to probe underground structures. The exploration methodology consisted of an initial GPR test to survey the entire area, followed by a secondary test informed by the results of the initial experiment, incorporating a diverse and increased number of lines. The findings confirmed the hyperbolic reflection patterns of cables at consistent locations along the same lines. These patterns were then compared to existing designs to corroborate the presence of cables at the identified locations. This research establishes an effective GPR methodology based on the electromagnetic wave reflection pattern, specifically the hyperbola, to detect difficult-to-locate underground buried cables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.