• Title/Summary/Keyword: 지하수유동해석

Search Result 216, Processing Time 0.021 seconds

Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass (방사성 폐기물 처분부지의 안정성 평가검증을 위한 균열암반 특성화 연구)

  • 이영훈;신현준;김기인;심택모
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 1999
  • The purpose of this study is the simulation of discontinuous rockmass and identification of characteristics of discontinuity network as a branch of the study on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste. In this study the site for LPG underground storage was selected for the similarities of the conditions which were required for disposal site of radioactive waste. Through the identification of hydraulic properties. characteristics of discontinuities and selection of discontinuity model around LPG underground storage facility. the applications of discrete fracture network model were evaluated for the analysis of pathway. The orientation and spatial density of discontinuities are primarily important elements for the simulation of groundwater and solute transportation in discrete fracture network model. In this study three fracture sets identified and the spatial intensity (P$_{32}$) of discontinuities is revealed as 0.85 $m^2$/㎥. The conductive fracture intensity (P$_{32c}$) estimated for the simulation area around propane cavern (200${\times}$200${\times}$200) is 0.536 $m^2$/㎥. Truncated conductive fracture intensity (T-P$_{32c}$) is calculated as 0.26 $m^2$/㎥ by eliminating the fracture with the iowest transmissivity and based on this value the pathway from the water curtain to PC 2. PC 3 analyzed.

  • PDF

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion (해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의)

  • Park, Hwa-Seok;Kihm, Jung-Hwi;Yum, Byoung-Woo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.8-21
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a hydrodynamic dispersion numerical model is performed to analyze quantitatively impacts of layered heterogeneity of geologic media and groundwater pumping schemes on groundwater flow and salt transport in coastal aquifer systems. A two-layer heterogeneous coastal aquifer system composed of a lower sand layer (aquifer) and an upper clay layer (aquitard) and a corresponding single-layer homogeneous coastal aquifer system composed of an equivalent lumped material are simulated to evaluate impacts of layered heterogeneity on seawater intrusion. In addition, a continuous groundwater pumping scheme and two different periodical groundwater pumping schemes, which withdraw the same amount of groundwater during the total simulation time, are applied to the above two coastal aquifer systems to evaluate impacts of groundwater pumping schemes on seawater intrusion. The results of the numerical simulations show that the periodical groundwater pumping schemes have more significant adverse influences on groundwater flow and salt transport not only in the lower sand layer but also in the upper clay layer, and groundwater salinization becomes more intensified spatially and temporally as the pumping intensity is higher under the periodical groundwater pumping schemes. These imply that the continuous groundwater pumping scheme may be more suitable to minimize groundwater salinization due to seawater intrusion. The results of the numerical simulations also show that groundwater salinization in the upper clay layer occurs significantly different from that in the lower sand layer under the periodical groundwater pumping schemes. Such differences in groundwater salinization between the two adjacent layers may result from layered heterogeneity of the layered coastal aquifer system.

Effect of Tunneling and Groundwater Interaction on Tunnel Behavior (터널시공과 지하수의 상호작용이 터널의 거동에 미치는 영향)

  • Yoo, Chung-sik;Kim, Sun-bin;Bae, gyu-jin;Shin, hyu-sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • This paper presents the effect of tunneling and groundwater interaction on tunnel behavior. As part of this study, design issuses for tunneling situations similar to that considered in this study are first identified. A parametric study is then conducted on tunneling situations frequently encountered in Seoul area using a 3D stress-pore presure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. The results indicate that tunneling in water bearing ground results in a deeper and wider settlement trough, increased axial thrusts in shotcrete lining than those without the groundwater. Also revealed is that the axial thrusts in shotcrete lining are governed by the relative permeability between the ground and the lining. Design implications of the findings from this study are discussed.

  • PDF

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Evaluation of Fly Ash Disposal Methods by Analysis of Leachate Migration (침출수 이동 해석을 통한 석탄재 처분방식의 평가)

  • 이상일
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.61-73
    • /
    • 1992
  • There are needs to examine the consequences of a regulation in effect to control the migration of leachates from disposal sites. The main objective of this study is to illustrate the methodology to evaluate basic disposal designs for compliance with a certain regulation, The "100/100 rule" is selected for demonstration purpose which dictates that the time for the leachates to travel a horizontal distance of 100feet (30.5m) away from the property where the landfill or pond is located must exceed 100 years. The two primary methods for disposal of ash from coal-fired utility plants, landfill and pond, are studied, Numerical groundwater flow analysis resulted in pressure head distribution and flux information in the cross-section of the domain while path line analysis provided travel path and time of leachate migration to compliance zone.ance zone.

  • PDF

Tritium Contents in Precipitation in Pohang and Taejon (포항 및 대전지역 강수의 삼중수소 함량)

  • 고용권;배대석;김천수;김건영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.126-132
    • /
    • 1999
  • Tritium. a radioisotope of hydrogen, is a constituent of water molecules and, therefore. is a ideal water tracer in hydrology. The tritium level of the precipitation in Korea has been monitored at the Pohang station from 1961 to 1976 by IAEA and has been analyzed from 1987 to present by KAERI. The tritium contents of the precipitation were recorded up to about 1,940 TU owing to world-wide nuclear testing in 1963. The contents have decreased and in present are about 10 TU. of which values are similar to those in pre-thermonuclear period. These data can be usefully applied to hydrological studies such as interpretation of relationship between groundwater and surface water and dating of groundwater.

  • PDF

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

Geochemistuy of the Borehole Groundwater from Volcanic Rocks in the Northeastern Part of Yeosu Area (여수 북동부 화산암 지역 시추공 지하수의 지화학 특성)

  • 고용권;김경수;배대석;김천수;한경원
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.255-269
    • /
    • 2001
  • The geochemical studies on groundwater in the borehole, which is straddled by multi-packer (MP) system, were carried out from a volcanic terrain in the Yeosu area. The pH of groundwater collected from selected sections in the MP-installed borehole is much higher (up to 9.6) than that of the borehole groundwater (7.0-7.9) collected using conventional pumping technique. Hydrochemistry shows that the groundwater has a typical chemical change with increasing sampling depth, suggesting that the groundwater is evolved through water-rock interaction along the fracture-controlled flow paths. The groundwater from the deeper part (138-175 m below the surface) in borehole KI is characterized by the Ca-C11 type with high Ca (up to 160 mg/L) and Cl (up to 293 mg/L) contents, probably reflecting seawater intrusion. The groundwater also has high sodium and sulfate contents compared to the waters from other boreholes. These observed groundwater chemistry is explained by the cation exchange, sulfide oxidation, and mixing process with seawater along the flow path.

  • PDF