• Title/Summary/Keyword: 지하물리탐사

Search Result 378, Processing Time 0.019 seconds

Location of Recent Micro-earthquakes in the Gyeongju Area (최근 경주지역 미소지진 진원 위치)

  • Han, Minhui;Kim, Kwang-Hee;Son, Moon;Kang, Su Young;Park, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Small to large earthquakes have been reported in Gyeongju and its vicinity in southeast Korea during historical period as well as instrumental observation period. We identified and located more than 300 earthquakes that occurred between January 2010 and December 2014 in a $20km{\times}30km$ area, but were unreported because of their small magnitudes. We used the Joint Hypocenter Determination (JHD) method to minimize the influence of the differences between the actual earth structure and 1-D velocity model for earthquake locations. The potential relationship between the previously reported Quaternary faults and the earthquake hypocenters was investigated. Many micro-earthquakes were found to be located in the southern segment of the Yeonil Tectonic Line, the Seokup fault, and the Waup basin boundary faults.

Derivation of Reverse-Time Migration Operator as Adjoint Operation (어드조인트 연산으로서의 역시간 구조보정 연산자 유도)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2007
  • Unlike the conventional reverse time migration method which is implemented by simply extrapolating wavefield in reverse time, this paper presents a derivation of another reverse time migration operator as the exact adjoint of the presumed forward wavefield extrapolation operator. The adjoint operator is obtained by formulating the forward time extrapolation operator in an explicit matrix equation form and then taking the adjoint to this matrix equation followed by determining the corresponding operator. The reverse time migration operator as the exact adjoint to the implied forward operator can be used not only as a migration algorithm but also as an adjoint operator which is required in the imaging through an inversion such as least-squares migration.

Travel Time Calculation Using Mono-Chromatic Oneway Wave Equation (단일주파수 일방향파동방정식을 이용한 주시계산)

  • Shin, Chang-Soo;Shin, Sung-Ryul;Kim, Won-Sik;Ko, Seung-Won;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.4
    • /
    • pp.119-124
    • /
    • 2000
  • A new fast algorithm for travel time calculation using mono-chromatic one-way wave equation was developed based on the delta function and the logarithms of the single frequency wavefield in the frequency domain. We found an empirical relation between grid spacing and frequency by trial and error method such that we can minimize travel time error. In comparison with other methods, travel time contours obtained by solving eikonal equation and the wave front edge of the snapshot by the finite difference modeling solution agree with our algorithm. Compared to the other two methods, this algorithm computes travel time of directly transmitted wave. We demonstrated our algorithm on migration so that we obtained good section showing good agreement with original model. our results show that this new algorithm is a faster travel time calculation method of the directly transmitted wave for imaging the subsurface and the transmission tomography.

  • PDF

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

Geophysical Imaging of Alluvial Water Table and the underlying Layers of Weathered and Soft Rocks (충적층 지하수면 및 그 하부의 풍화암/연암의 경계면 파악을 위한 복합 지구물리탐사)

  • Ju, Hyeon-Tae;Lee, Chul-Hee;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Although geophysical methods are useful and generally provide valuable information about the subsurface, it is important to recognize their limitations. A common limitation is the lack of sufficient contrast in physical properties between different layers. Thus, multiple methods are commonly used to best constrain the physical properties of different layers and interpret each section individually. Ground penetrating radar (GPR) and shallow seismic reflection (SSR) methods, used for shallow and very shallow subsurface imaging, respond to dielectric and velocity contrasts between layers, respectively. In this study, we merged GPR and SSR data from a test site within the Cheongui granitic mass, where the water table is ~3 m deep all year. We interpreted the data in combination with field observations and existing data from drill cores and well logs. GPR and SSR reflections from the tops of the sand layer, water table, and weathered and soft rocks are successfully mapped in a single section, and they correlate well with electrical resistivity data and SPS (suspension PS) well-logging profiles. In addition, subsurface interfaces in the integrated section correlate well with S-wave velocity structures from multi-channel analysis shear wave (MASW) data, a method that was recently developed to enhance lateral resolution on the basis of CMP (common midpoint) cross-correlation (CMPCC) analysis.

3-D Seismic Profiling (3차원 탄성파탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • 'Kite' is a newly developed single-channel seismic imaging system capable of producing high resolution three dimensional images of subbottom geology in one traverse of a survey region. The system consists of a horizontally towed hydrophone array and active source. The hydrophone array is towed axis perpendicular to ship direction and the airgun source at the end of the hydrophone array is excited at timed intervals during the progression. The construction of the three dimensional subbottom image was made simply by using conventional multichannel seismic reflection data processing techniques. Common source shot (CSS) gathers of the hydrophone traces are evaluated using Dix's equation for average interval velocity of each subbottom layer. From the interval velocity profile and the normal consolidation stress condition, values of shear modulus, porosity, and shear velocity are deduced from the chosen values of physical constants. The system has been successfully tested at several locations on the North Atlantic continental shelf.

  • PDF

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM (TBM 주변 지반상태예측을 위한 전기비저항 이론식 유도 및 검증)

  • Hong, Chang-Ho;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Imaging Inner Structure of Bukbawi at Mt. Palgong Provincial Park Using Ground Penetrating Radar (지하투과레이더를 활용한 팔공산 도립공원 북바위 내부구조 연구)

  • Kim, Hyeong-Gi;Baek, Seung-Ho;Kim, Seung-Sep;Lee, Na Young;Kwon, Jang-Soon
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • A granite rock body, called 'Bukbawi', located on a mountaineering trail at Mt. Palgong Provincial Park is popular among the public because it resembles a percussion instrument. If someone hits the specific surface area of this rock body, people can hear drum-like sound. Such phenomenon may be geologically associated with exfoliation process of the granite body or miarolitic cavity developed after gasses escaped during formation of granite. To understand better the inner structure causing drum-like sound, we carried out a non-destructive ground-penetrating radar survey. In this study, as our primary target is very close to the surface, we utilized 1 GHz antennas to produce high-resolution near-surface images. In order to construct 3-D internal images, the measurements were conducted along a pre-defined grid. The processed radargrams revealed that the locations associated with 'drum' sound coincide with strong reflections. In addition, both reflection patterns of fracture and cavity were observed. To further quantify the observed reflections, we simulated GPR scans from a synthetic fracture in a granite body, filled with different materials. The simulated results suggest that both exfoliation process and miarolitic cavity may have contributed to the 'drum' phenomena. Furthermore, the radargrams showed a well-developed cavity signature where two major reflection planes were crossed. Thus, our study is an example of non-destructive geophysical studies that can promote Earth Science in the broader community by examining geological structures attracting the public.