• Title/Summary/Keyword: 지하광산갱도

Search Result 48, Processing Time 0.029 seconds

Collecting Travel Time Data of Mine Equipments in an Underground Mine using Reverse RFID Systems (Reverse RFID 시스템을 이용한 지하광산에서의 장비 이동시간 측정)

  • Jung, Jihoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • In this study, travel time data collection of mine equipments was conducted in an underground mine using a reverse Radio Frequency IDentification (RFID) system. In the reverse RFID system, RFID readers and antennas are mounted on mine equipments, and RFID tags are attached to the underground mine gallery. Indoor experiments were performed to analyze how RFID reader transmission power levels affect tag readable area and tag recognition rates. The results showed that travel time measurement become precise when the reader transmission power was reduced, however tag recognition rates were reduced. The field experiments indicated that setting the reader transmission power to 28 dBm maintained the tag recognition rate while minimizing the tracking location error. In addition, the results revealed that the reverse RFID system can be used successfully in an underground mine to collect the travel time data of haulage trucks.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

A study on the robot for mining of underground resources (지하자원 채굴용 로봇의 연구)

  • Noh, Jong-Ho;Shin, Suk-Shin;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.399-403
    • /
    • 2013
  • Mining diggers have been substituted with the robots for the mining works in dangerous and narrow tunnel, and those demands are increased in nowadays. In this study, experimental research on the remote controlled robots to perform after the development of the robot. According to the test results, performances of the developed robot and its working devices have been modified several times. It has been considered that the robot keeps its optimum performance in states as follows; driving speed 1.0 km/h, crawl angle $10^{\circ}$, spiking cycle 500bpm and breaking power $30kg_fm$. And also it has been found that sufficient cooling for the robot's working parts is essential to extend those working periods longer than 3 hours steadily under rating condition.

Stability Analysis on the Crushing Facility Space in Mine Tunnel (갱내 파쇄시설 구축을 위한 갱도 안정성평가)

  • Kim, Jong-Gwan;Yang, Hyung-Sik;Kim, Won-Beom;Jang, Myoung-Hwan;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.145-152
    • /
    • 2010
  • In this study, a survey of structural geology and discontinuities were carried out on the space in a limestone mine where the construction of crushing facilities is in planning. The stability of the site was analyzed by rock mass classifications and numerical analysis. Through these analyses, it could be known that removal of pillars could make the stability problems in the mine and the supports for pillars must be considered.

Possible Methods of Identifying Underground Cavities Using Seismic Waves (지진파를 이용한 지하 공동의 탐지 방법)

  • 김소구;마상윤;김지수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.137-153
    • /
    • 1996
  • The purpose of this study is to investigate the possibilities of identifying and detecting underground cavities using seismic waves recorded by the fixed and mobile stations. During 18 months of field work we recorded chemical explosions near the Bongdarn station. Seismic Stations were installed on the free surface and underground inside the Samba mine. The seismograms at the fixed(lorg-term) seismic station show abrupt change of polarization characteristics which can he associated with the appearance of P-to-S converted phase(PS) at 150 ~ 200 msec after the first P arrival. This result indicates that converted phases are generated very near to the Bongdarn station at a depth of 190m. Shear-wave splitting phenomena have also been observeci The time delay between fast shear(fS) and slow shear(sS) waves ranges between 30 and 60 msec(average is 42 msec). However, exact time delay between the fast and the slow shear waves can not be accurately measured because of the very short time delay and limitation of sampling rate. Chemical explosion experiments were recorded at stations along various paths to contrast the seismic response of areas with and without cavities. The seismograms recorded at the stations installed at cavity areas show an abrupt change of polarization characteristics but not on the other stations. Seismic waves propagating through the cavity are characterized by the attenuation of high frequency waves and predominantly low frequency seismic waves after the S wave arrivals.

  • PDF

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.