• Title/Summary/Keyword: 지하갱도

Search Result 75, Processing Time 0.026 seconds

Hydraulic Analysis of Air-core Patterns with Various Discharge and Improving Inlet Part of the Underground Bypass Model (유량변화와 지하방수로 유입구모형의 개선에 따른 공기공동양상의 수리학적 분석)

  • Park, Sung Won;Kim, Hyung-Jun;Rhee, Dong Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.369-369
    • /
    • 2016
  • 홍수피해 저감을 위한 지하방수로나 지하저류지 등은 홍수 방어를 위한 도심 내의 토지 확보 부담을 줄이며, 집중 호우 발생 시 내수를 초기에 신속하게 배제하여 제내지 침수 피해를 줄이는데 효율적으로 활용된다. 미국 및 일본, 홍콩과 같은 외국에서는 이미 지하방수로 및 지하저류지를 활용한 홍수피해 저감방안을 수립하여 활용하고 있으며, 최근 국내에서도 치수 계획 수립 시 지하방수로 혹은 지하저류지 시설 도입이 활발히 검토되고 있으나 적용사례가 전무하여 제반기술이 부족하고 많은 시행착오가 예상된다. 제반설계기술의 경우는 구조적인 방안이 모색되어야 하며 대표적으로, 지하방수로 유입구 형상이, 동일한 흐름조건에 대한 유량배제효율에 가장 지배적인 영향인자로 알려진 바 있으며 다양한 유입구 형상설계방안이 기존 실험적 연구 및 외국 설계지침에 제안된 바 있다. 지하방수로는 접근 수로를 통해 유입된 유량이 유입구를 지나며 가속되어 와류 흐름을 형성하며 수직 갱도로 유입되는 구조를 갖기 때문에 지하방수로의 방류 효율을 높이기 위해서는 유입구에서 흐름 특성을 파악하는 것이 중요하다. 이때 유입흐름특성이 사류일 경우 혹은 급격하게 유입 유량이 많아지는 경우 수직 갱도 내에 공기 공동이 형성되어 구조물 파손, 와류의 발생으로 인한 배제효율 감소 등의 피해를 야기할 수 있으므로 수리학적으로 규명할 필요가 있다. 따라서 본 연구에서는 지하방수로의 기존 유입구형상에 대한 장단점을 비교하고, 개선점을 적용하여 수리모형을 제작하여 개수로 실험장치에 설치하고 다양한 유입흐름조건에 따라 수리실험을 수행하였다. 그 결과 유입흐름조건에 따라 발생하는 유입구의 공기 공동의 발달 및 소멸 그리고 규모변화를 정량적으로 분석하여, 유입부의 가능 단면적이 큰 수직갱도인 경우, 유량배제 효율이 감소되는 분석결과에 적절하게 일치하였으며, 본 연구결과는 향후 지하방수로 설계의 제반기술의 수립 시 효율적인 활용이 가능하다.

  • PDF

Effect of Degradation of Rock Mass Properties Caused by Water Pressure on the Stability of Mine Gallery (수압에 의한 암반의 물성 저하가 갱도의 안정성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2011
  • Mine closure does often accompany the flooding of mine galleries due to ceasing a pumping operation. When a mine gallery is flooded, rocks around the gallery are fully saturated and the gallery is subject to a water pressure. The uniaxial unconfined compressive strength of a rock depends on its water content and decreases as the water content increases. A water pressure may originate the crack growth of a rock or the discontinuity growth of rock mass. Although the water in a gallery will give some support pressure inside the gallery, the degradation of rock mass properties caused by a water pressure will reduce the stability of the gallery. In this study, 2-dimensional discontinuous and 3-dimensional continuous numerical analyses have been conducted to evaluate an effect that a reduction of rock mass properties around the gallery induced by a water pressure has on the stability of mine gallery. The numerical analyses show that a reduction of rock mass properties caused by a water pressure increases displacements of rock mass around mine gallery. 2-dimensional model is found to give larger values of displacement than 3-dimensional model.

A Suggestion of Rock Mass Classification Systems for Stability of Underground Limestone Mines - A Case Study (석회석 광산의 지하갱도 안정성평가를 위한 암반분류법 개발)

  • Karanam U. M. Rao;Choon Sunwoo;Chuug, So-Keul;Park, Sung-Oong;Jeon, Yang-Soo
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.421-433
    • /
    • 2003
  • Demand for limestone production from both the underground and opencast mines in Korea is gradually increasing. Increase in productivity with safe mining operations is the emphasis laid on the mining industry. KIGAM has undertaken a detailed investigation to apply RMR and Q classification system for the design of underground limestone mining operations. The field investigations were confined to the underground mines of Daesung Mining Development Co. Ltd. and Pyunghae Mines of Korean Airport Service. Modification to the standard RMR and Q for limestone mines in Korea along with the correlation between these two systems are discussed while attempts were also made to calculate the width of a safe unsupported span.

A numerical study on the pressure relief by a vertical shaft in a high speed railway tunnel (고속열차의 터널 진입시 수직갱의 압력저감효과에 대한 수치해석 연구)

  • Kim, Hyo-Geun;Seo, Sang-Yeon;Ha, Hee-Sang;Kwon, Hyeok-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.559-570
    • /
    • 2013
  • High speed railway can transport large quantity of people and commodities in a short time and has become one of the most desirable and environmentally friendly transportation. However, it is hard to have a complicated route for high speed railways, construction of tunnels is essential to pass through a mountain area. When a high speed train enters a tunnel, pressure wave is created in a tunnel and the wave causes micro pressure wave and discomfort to passengers. In order to alleviate pressure wave in a tunnel, constructing a vertical shaft is one of the most efficient ways. This study represents a numerical analysis module, which takes into account the effect of a vertical shaft in a tunnel. The module can be used in a numerical program (TTMA) specialized for aerodynamics in a tunnel, and it was validated by comparing numerical results with various measurements in Emmequerung tunnel and results from numerical analysis using Fluent.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

An experimental study of smoke extraction efficiency along with ventilation building location in the mad tunnel (도로터널 내 환기소 위치별 방재 효율에 관한 실험적 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoon, Chan-Hoon;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • An experimental study was carried out on a reduced scale model tunnel to investigate the efficiency of disaster prevention at underground and ground ventilation equipments for the fire in road tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was manufactured. The vertical shafts that are used in the analysis of efficiency of disaster prevention are the two models that had considered when the real tunnels are designed and the amounts of smoke exhaust are applied the miniature of the real tunnels' smoke exhaust, 560 and $280\;m^3/s$. As the result of analysis, it is the possible the emissions of the entire quantity of CO gas through the vertical shafts. In the ground ventilation equipments, the concentration of CO is discharged 2.23~2,73 ppm smaller than the underground ventilation equipments. And the temperature rise in the ground ventilation equipments is $0.53{\sim}0.94^{\circ}C$ lower than in the underground ventilation equipments because of a cooling effect of the surface of the tunnel wall. As a result of analysis of CO concentration and the temperature rise in the modeling ventilation equipment, the position of ground ventilation equipment is more effective than the underground ventilation equipment in disaster prevention measures.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Earth pressure of vertical shaft considering arching effect in layered soils (다층지반에서의 아칭현상에 의한 수직갱 토압)

  • Lee, In-Mo;Moon, Hong-Pyo;Lee, Dea-Su;Kim, Kyung-Ryeol;Cho, Man-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • A new earth pressure equation acting on the vertical shafts in cohesionless soils has been proposed by modifying the equations proposed by others. In order to verify the modified equation, model tests which can control uniform wall displacement with depth to radial direction were conducted. Model tests were performed with three different wall friction angles and two different relative densities. The measured values were larger than estimated values when assuming $\lambda=1$ ; smaller than those when assuming $\lambda=1-sin\phi$. The parameter, $\lambda$ is the ratio of tangential stress to vertical stress and is the most critical value in proposed equation. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by reasonably assuming the failure surface of layered soils and using the modified equation. In order to verify the proposed method, in-situ measurement data have been collected from the three in-situ vertical shafts installed in layered soils. Most of earth pressures converted from measured data match reasonably well with estimated values using proposed method.

  • PDF

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

Effect of Photographing Light Intensity on Rock Joint Survey in Mine Tunnels using Stereophotogrammetry (입체사진측량기법을 이용한 광산 갱도 내 불연속면 조사에 대한 조도의 영향에 관한 연구)

  • Han, Jeong-Hun;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • Stereophotogrammetry is used to extract spatial information of an interested object by constructing a stereo-image from two or more photos. In this study, the stereophotogrammetry was adopted for a rock joint survey in mine tunnels. The orientations of discontinuities were measured from two mine tunnels with a clinocompass. To evaluate the effect of photographing light level on the stereophotogrammetry analysis, the light intensity was changed within a predefined range for every photograph. Those photographs were analyzed by using a commercial code for stereophotogrammetry - ShapeMetriX 3D, and the results from the analysis were compared with the manual measurement using a clinocompass.