• Title/Summary/Keyword: 지하갱도

Search Result 75, Processing Time 0.022 seconds

Experimental study on the effect of exhaust ventilation by shafts for case of fire in long traffic tunnels (장대 교통터널 화재시 수직갱의 배연효과에 관한 실험적 연구)

  • Yoo, Yong-ho;Yoon, Chan-hoon;Yoon, Sung-wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement and to investigate the effect of exhaust ventilation using by shafts for case of fire in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and test were carried out systematically. The results of the shaft height test show that the effect on exhaust ventilation by a shaft delays the propagation time of backlayering, and the temperature decreases as the shaft height increases. If the fire occurs downstream of the shaft, the backlayering develops to get stronger by the shaft exhaust effect and then the propagation of CO and temperature increase along with propagation of CO. That is to say, in the case of fire downstream of the shaft, the shaft has the advantage of smoke exhaust effects, but it might result in a dangerous situation for the escaping passengers due to the more developed backlayering.

  • PDF

Evaluation of Groundwater Flow through Rock Mass around Development Openings of Mine (광산 갱도 주변 암반에서의 지하수 유동 평가)

  • Yoon, Yong-Kyun
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.370-376
    • /
    • 2011
  • To design the drainage system of a mine, it is very important to evaluate the groundwater inflow to the mine workings. In this study, continuous steady state flow through rock mass around mine openings developed in Sungok area of Gagok Mine was analyzed. Saturated only model and Saturated/unsaturated model were used as material models of rock mass. Groundwater quantities flowing into Sungok 160 level which is 1216 m long are computed as 1450 $m^3$/day in case of a saturated model and as 1071 $m^3$/day in case of a saturated/unsaturated model. An effect that hydraulic conductivity has on inflow turned out be greater than precipitation and inflow increased linearly with increase of hydraulic conductivity. It was found that change of hydraulic conductivity ratio and orientation have an impact on the variation of inflow and water table.

Review on Design of Underground Mine Openings in Korea and Overseas (국내외 지하광산 갱도설계 현황에 대한 고찰)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.30-37
    • /
    • 2019
  • Some leading countries in mining have a very quantitative guideline for underground mine opening design which is useful to minimize mine hazards such as rockfall and collapse. Those hazards sometimes can cause a huge damage on human life and property in the mines. Construction guidelines of underground mines in Korea consist of qualitative and general expressions although the workers' safety rules and guides are well provided. Recently, mining operations in Korea are going underground due to the environmental regulations and resource depletion at shallow depth, and therefore there is a growing demand on a specialized and systematic guideline for mine opening design securing the underground stability. In this paper, current status of mining industry, research trends, and mining guidelines in Korea and overseas have been reviewed to give an insight into developing a new Korean guideline for underground mine design.

Introduction of 3D Printing Technique applied for producing Physical Models of Underground Mine Openings (지하광산갱도의 물리모형 구현을 위한 3D프린팅 기술 적용사례)

  • Yoon, Dong-Ho;Fereshtenejad, Sayedalireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Physical models of underground mines are very useful to the design of mine openings and the management of work progress of mining companies as well as to consulting. Even though 3D image realization techniques for mine openings have already been developed by various companies the physical models are still widely used because they can provide better understanding without sophisticated equipments for the most of people. Conventional materials for the physical models are paper and acryl which demand a lot of time and labor to make the model even with low precision and high cost. In this research, 3D printing technique is adopted to develop the physical model with relatively short time, low cost, and proper degree of precision. Finally the computer software "UMine2STL" was developed and verified by comparing the printed product with its design.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.