• Title/Summary/Keyword: 지표선정

Search Result 1,696, Processing Time 0.033 seconds

Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification (하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.885-894
    • /
    • 2006
  • The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data.

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

A Study on the Determinants of Patent Citation Relationships among Companies : MR-QAP Analysis (기업 간 특허인용 관계 결정요인에 관한 연구 : MR-QAP분석)

  • Park, Jun Hyung;Kwahk, Kee-Young;Han, Heejun;Kim, Yunjeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.21-37
    • /
    • 2013
  • Recently, as the advent of the knowledge-based society, there are more people getting interested in the intellectual property. Especially, the ICT companies leading the high-tech industry are working hard to strive for systematic management of intellectual property. As we know, the patent information represents the intellectual capital of the company. Also now the quantitative analysis on the continuously accumulated patent information becomes possible. The analysis at various levels becomes also possible by utilizing the patent information, ranging from the patent level to the enterprise level, industrial level and country level. Through the patent information, we can identify the technology status and analyze the impact of the performance. We are also able to find out the flow of the knowledge through the network analysis. By that, we can not only identify the changes in technology, but also predict the direction of the future research. In the field using the network analysis there are two important analyses which utilize the patent citation information; citation indicator analysis utilizing the frequency of the citation and network analysis based on the citation relationships. Furthermore, this study analyzes whether there are any impacts between the size of the company and patent citation relationships. 74 S&P 500 registered companies that provide IT and communication services are selected for this study. In order to determine the relationship of patent citation between the companies, the patent citation in 2009 and 2010 is collected and sociomatrices which show the patent citation relationship between the companies are created. In addition, the companies' total assets are collected as an index of company size. The distance between companies is defined as the absolute value of the difference between the total assets. And simple differences are considered to be described as the hierarchy of the company. The QAP Correlation analysis and MR-QAP analysis is carried out by using the distance and hierarchy between companies, and also the sociomatrices that shows the patent citation in 2009 and 2010. Through the result of QAP Correlation analysis, the patent citation relationship between companies in the 2009's company's patent citation network and the 2010's company's patent citation network shows the highest correlation. In addition, positive correlation is shown in the patent citation relationships between companies and the distance between companies. This is because the patent citation relationship is increased when there is a difference of size between companies. Not only that, negative correlation is found through the analysis using the patent citation relationship between companies and the hierarchy between companies. Relatively it is indicated that there is a high evaluation about the patent of the higher tier companies influenced toward the lower tier companies. MR-QAP analysis is carried out as follow. The sociomatrix that is generated by using the year 2010 patent citation relationship is used as the dependent variable. Additionally the 2009's company's patent citation network and the distance and hierarchy networks between the companies are used as the independent variables. This study performed MR-QAP analysis to find the main factors influencing the patent citation relationship between the companies in 2010. The analysis results show that all independent variables have positively influenced the 2010's patent citation relationship between the companies. In particular, the 2009's patent citation relationship between the companies has the most significant impact on the 2010's, which means that there is consecutiveness regarding the patent citation relationships. Through the result of QAP correlation analysis and MR-QAP analysis, the patent citation relationship between companies is affected by the size of the companies. But the most significant impact is the patent citation relationships that had been done in the past. The reason why we need to maintain the patent citation relationship between companies is it might be important in the use of strategic aspect of the companies to look into relationships to share intellectual property between each other, also seen as an important auxiliary of the partner companies to cooperate with.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

Characteristics of Vegetation Structure of Burned Area in Mt. Geombong, Samcheok-si, Kangwon-do (강원도 삼척 검봉산 일대 산불 피해복원지 식생 구조 특성)

  • Sung, Jung Won;Shim, Yun Jin;Lee, Kyeong Cheol;Kweon, Hyeong keun;Kang, Won Seok;Chung, You Kyung;Lee, Chae Rim;Byun, Se Min
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In 2000, a total of 23,794ha of forest was lost due to the East Coast forest fire, and about 70% of the damaged area was concentrated in Samcheok. In 2001, artificial restoration and natural restoration were implemented in the damaged area. This study was conducted to understand the current vegetation structure 21 years after the restoration of forest fire damage in the Samcheok, Gumbong Mountain area. As a result of classifying the vegetation community, it was divided into three communities: Quercus variabilis-Pinus densiflora community, Pinus densiflora-Quercus mongolica community, and Pinus thunbergii community. Quercus variabilis, Pinus densiflora, and Pinus thunbergii planted in the artificial restoration site were found to continue to grow as dominant species in the local vegetation after restoration. As for the species diversity index of the community, the Quercus variabilis-Pinus densiflora community dominated by deciduous broad-leaf trees showed the highest, and the coniferous forest Pinus thunbergii community showed the lowest. Vegetation in areas affected by forest fires is greatly affected by reforestation tree species, and 21 years later, it has shown a tendency to recover to the forest type before forest fire. In order to establish DataBase for effective restoration and to prepare monitoring data, it is necessary to construct data through continuous vegetation survey on the areas affected by forest fires.

[ $^1H$ ] MR Spectroscopy of the Normal Human Brains: Comparison between Signa and Echospeed 1.5 T System (정상 뇌의 수소 자기공명분광 소견: 1.5 T Signa와 Echospeed 자기공명영상기기에서의 비교)

  • Kang Young Hye;Lee Yoon Mi;Park Sun Won;Suh Chang Hae;Lim Myung Kwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • Purpose : To evaluate the usefulness and reproducibility of $^1H$ MRS in different 1.5 T MR machines with different coils to compare the SNR, scan time and the spectral patterns in different brain regions in normal volunteers. Materials and Methods : Localized $^1H$ MR spectroscopy ($^1H$ MRS) was performed in a total of 10 normal volunteers (age; 20-45 years) with spectral parameters adjusted by the autoprescan routine (PROBE package). In all volunteers, MRS was performed in a three times using conventional MRS (Signa Horizon) with 1 channel coil and upgraded MRS (Echospeed plus with EXCITE) with both 1 channel and 8 channel coil. Using these three different machines and coils, SNRs of the spectra in both phantom and volunteers and (pre)scan time of MRS were compared. Two regions of the human brain (basal ganglia and deep white matter) were examined and relative metabolite ratios (NAA/Cr, Cho/Cr, and mI/Cr ratios) were measured in all volunteers. For all spectra, a STEAM localization sequence with three-pulse CHESS $H_2O$ suppression was used, with the following acquisition parameters: TR=3.0/2.0 sec, TE=30 msec, TM=13.7 msec, SW=2500 Hz, SI=2048 pts, AVG : 64/128, and NEX=2/8 (Signa/Echospeed). Results : The SNR was about over $30\%$ higher in Echospeed machine and time for prescan and scan was almost same in different machines and coils. Reliable spectra were obtained on both MRS systems and there were no significant differences in spectral patterns and relative metabolite ratios in two brain regions (p>0.05). Conclusion : Both conventional and new MRI systems are highly reliable and reproducible for $^1H$ MR spectroscopic examinations in human brains and there are no significant differences in applications for $^1H$ MRS between two different MRI systems.

  • PDF

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

A Survey on the Oral Health Conditions according to Dental Health Behaviors of Elderly People in Community (일부 지역사회 노인들의 구강보건행동에 따른 구강건강상태)

  • Kang, Hyeong-Ku;Yoon, Hyun-Suk;Cho, Young-Chae
    • Journal of agricultural medicine and community health
    • /
    • v.30 no.3
    • /
    • pp.263-277
    • /
    • 2005
  • Objectives: This study aimed to reveal the oral health conditions based on the dental health behaviors of a community-dwelling elderly. Methods: The subjects included 206 rural dwellers(100 men & 106 women) aged over 65 years old, who received dental health check-ups in the local public health center and its branches attached to 6 respective Myons of Chunchongnamdo Province, during the 2-month period from Jan. 1st to Feb. 28th, 2005. They were examined by dentists and given self-administered questionnaires asking about their dental heaith behaviors and subjective symptoms of gingival bleeding. Results: The oral health conditions based on dental health behavior showed that those who have not taken dental health service a year were found to have significantly greater number of missing teeth(p=0.002), DMFT(p=0.002) and CPITN(p=0.018), and those who have not observed intra-oral conditions a week to have significantly less number of filled teeth(p=0.002) and significantly greater number of missing teeth(p=0.000) and CPITN (p=0.000) than their respective counterparts. In terms of brushing, those who brushed their teeth below "3 times/day" were found to have significantly greater number of decayed teeth(p=0.000), missing teeth(p=0.000), DMFT(p=0.000) and CPITN(p=0.000) than their counterparts. In terms of time spent in brushing, those who spends "below 3 minutes" had significantly greater number of missing teeth(p=0.002) and DMFT(p=0.041), and significantly less number of filled teeth(p=0.036). According to the use of aid tools for cleaning teeth, the group who don't use them had significantly greater number of DMFT(p=0.041) and CPITN(p=0.018) than its counterpart. Classified by smoking habits, smoking groups had significantly greater number of decayed teeth(p=0.035) and CPITN(p=0.001) than non-smoking groups. Multiple regression analysis of the study data revealed that the significant factors influencing number of decayed teeth were number of brushing, sex and intra-oral observation (explanatory power of 14.2%). The significant factors for number of filled teeth were sex, intra-oral observation, use of aid tools, frequency of brushing, subjective health conditions and drinking of sweet beverages(explanatory power of 18.2%), those for number of missing teeth, number of brushing and age(explanatory power of 13.9%) those for DMFT, number of brushing, sex, use of dental service, age(explanatory power: 13.5%), and those for CPITN included smoking habits, use of dental service, use of aid tools (explanatory power: 10.8%). Conclusions: The study results revealed that the dental health behavior of the elderly population is in poor conditions and their consequent intra-oral health conditions are not good. To improve their oral conditions, public campaign and education will be needed to modify unhealthy dental health behaviors.

  • PDF

Studies on Development of Prediction Model of Landslide Hazard and Its Utilization (산지사면(山地斜面)의 붕괴위험도(崩壞危險度) 예측(豫測)모델의 개발(開發) 및 실용화(實用化) 방안(方案))

  • Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.175-190
    • /
    • 1994
  • In order to get fundamental information for prediction of landslide hazard, both forest and site factors affecting slope stability were investigated in many areas of active landslides. Twelve descriptors were identified and quantified to develop the prediction model by multivariate statistical analysis. The main results obtained could be summarized as follows : The main factors influencing a large scale of landslide were shown in order of precipitation, age group of forest trees, altitude, soil texture, slope gradient, position of slope, vegetation, stream order, vertical slope, bed rock, soil depth and aspect. According to partial correlation coefficient, it was shown in order of age group of forest trees, precipitation, soil texture, bed rock, slope gradient, position of slope, altitude, vertical slope, stream order, vegetation, soil depth and aspect. The main factors influencing a landslide occurrence were shown in order of age group of forest trees, altitude, soil texture, slope gradient, precipitation, vertical slope, stream order, bed rock and soil depth. Two prediction models were developed by magnitude and frequency of landslide. Particularly, a prediction method by magnitude of landslide was changed the score for the convenience of use. If the total store of the various factors mark over 9.1636, it is evaluated as a very dangerous area. The mean score of landslide and non-landslide group was 0.1977 and -0.1977, and variance was 0.1100 and 0.1250, respectively. The boundary value between the two groups related to slope stability was -0.02, and its predicted rate of discrimination was 73%. In the score range of the degree of landslide hazard based on the boundary value of discrimination, class A was 0.3132 over, class B was 0.3132 to -0.1050, class C was -0.1050 to -0.4196, class D was -0.4195 below. The rank of landslide hazard could be divided into classes A, B, C and D by the boundary value. In the number of slope, class A was 68, class B was 115, class C was 65, and class D was 52. The rate of landslide occurrence in class A and class B was shown at the hige prediction of 83%. Therefore, dangerous areas selected by the prediction method of landslide could be mapped for land-use planning and criterion of disaster district. And also, it could be applied to an administration index for disaster prevention.

  • PDF

A Study of Intangible Cultural Heritage Communities through a Social Network Analysis - Focused on the Item of Jeongseon Arirang - (소셜 네트워크 분석을 통한 무형문화유산 공동체 지식연결망 연구 - 정선아리랑을 중심으로 -)

  • Oh, Jung-shim
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.172-187
    • /
    • 2019
  • Knowledge of intangible cultural heritage is usually disseminated through word-of-mouth and actions rather than written records. Thus, people assemble to teach others about it and form communities. Accordingly, to understand and spread information about intangible cultural heritage properly, it is necessary to understand not only their attributes but also a community's relational characteristics. Community members include specialized transmitters who work under the auspices of institutions, and general transmitters who enjoy intangible cultural heritage in their daily lives. They converse about intangible cultural heritage in close relationships. However, to date, research has focused only on professionals. Thus, this study focused on the roles of general transmitters of intangible cultural heritage information by investigating intangible cultural heritage communities centering around Jeongseon Arirang; a social network analysis was performed. Regarding the research objectives presented in the introduction, the main findings of the study are summarized as follows. First, there were 197 links between 74 members of the Jeongseon Arirang Transmission Community. One individual had connections with 2.7 persons on average, and all were connected through two steps in the community. However, the density and the clustering coefficient were low, 0.036 and 0.32, respectively; therefore, the cohesiveness of this community was low, and the relationships between the members were not strong. Second, 'Young-ran Yu', 'Nam-gi Kim' and 'Gil-ja Kim' were found to be the prominent figures of the Jeongseon Arirang Transmission Community, and the central structure of the network was concentrated around these three individuals. Being located in the central structure of the network indicates that a person is popular and ranked high. Also, it means that a person has an advantage in terms of the speed and quantity of the acquisition of information and resources, and is in a relatively superior position in terms of bargaining power. Third, to understand the replaceability of the roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim, who were found to be the major figures through an analysis of the central structure, structural equivalence was profiled. The results of the analysis showed that the positions and roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim were unrivaled and irreplaceable in the Jeongseon Arirang Transmission Community. However, considering that these three members were in their 60s and 70s, it seemed that it would be necessary to prepare measures for the smooth maintenance and operation of the community. Fourth, to examine the subgroup hidden in the network of the Jeongseon Arirang Transmission Community, an analysis of communities was conducted. A community refers to a subgroup clearly differentiated based on modularity. The results of the analysis identified the existence of four communities. Furthermore, the results of an analysis of the central structure showed that the communities were formed and centered around Young-ran Yu, Hyung-jo Kim, Nam-gi Kim, and Gil-ja Kim. Most of the transmission TAs recommended by those members, students who completed a course, transmission scholarship holders, and the general members taught in the transmission classes of the Jeongseon Arirang Preservation Society were included as members of the communities. Through these findings, it was discovered that it is possible to maintain the transmission genealogy, making an exchange with the general members by employing the present method for the transmission of Jeongseon Arirang, the joint transmission method. It is worth paying attention to the joint transmission method as it overcomes the demerits of the existing closed one-on-one apprentice method and provides members with an opportunity to learn their masters' various singing styles. This study is significant for the following reasons: First, by collecting and examining data using a social network analysis method, this study analyzed phenomena that had been difficult to investigate using existing statistical analyses. Second, by adopting a different approach to the previous method in which the genealogy was understood, looking at oral data, this study analyzed the structures of the transmitters' relationships with objective and quantitative data. Third, this study visualized and presented the abstract structures of the relationships among the transmitters of intangible cultural heritage information on a 2D spring map. The results of this study can be utilized as a baseline for the development of community-centered policies for the protection of intangible cultural heritage specified in the UNESCO Convention for the Safeguarding of Intangible Cultural Heritage. To achieve this, it would be necessary to supplement this study through case studies and follow-up studies on more aspects in the future.