• Title/Summary/Keyword: 지표거칠기

Search Result 3, Processing Time 0.016 seconds

Estimation of Actual Evapotranspiration using Multi-Satellite Data over Korea Peninsula (다중 위성 자료를 이용한 한반도에서의 실제 증발산량 산출에 관한 연구)

  • Lee, Min-Ji;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.145-151
    • /
    • 2011
  • Evapotranspiration (ET) is an important process acrossa wide range of disciplines, including ecology, hydrology and meteorology.In this study, daily actual evapotranspiration (ETa) is based energy balance equation and considering high surface roughness length to estimate. This study was used variety of satellite data and ground observation data in Korea Peninsula from 1 January to 31 December 2009. In this study, sensible heat flux is one of the important parameters of ETa. Measurements of sensible heat flux are, however, complex and can't be easily obtained. So this study was used an empirical coefficient B to simplify estimate of sensible heat flux. The coefficient B in the ETa model requires a careful definition of aerodynamic resistance. So this study proposed ETa model considering aerodynamic resistance and high surface roughness length. This study was conducted validation in comparison of the proposed daily ETa results with Priestley-Taylor ETp.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

The Application of Satellite Data to Land Surface Process Parameterization in ARPS Model (ARPS 모형 지면 과정 모수화에 위성 자료의 응용)

  • Ha, Kyung-Ja;Suh, Ae-Sook;Chung, Hyo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.99-108
    • /
    • 1998
  • In order to represent the surface characteristics in local meteorological model, soil type, vegetation index, surface roughness length, surface albedo and leaf area index should be prescribed on the surface process parameterization. In this study, the $1^{\circ}/1^{\circ}leaf$ area index, surface roughness length, and snow free surface albedo and fine mesh NDVI with seasonal variation derived from the satellite observation were applied to the land surface process parameterization. From comparison between with and without satellite data in the interactions between biosphere and atmosphere, land and atmosphere, the sensitivity of the simulated heat, energy and water vapor fluxes, ground temperature, wind, canopy water content, specific humidity, and precipitation fields were investigated.