• Title/Summary/Keyword: 지체수소균열

Search Result 9, Processing Time 0.024 seconds

열처리가 Zr-2.5Nb압력관 재료의 지체균열전파 특성에 미치는 영향

  • 김인섭;오제용;김영석;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.765-770
    • /
    • 1995
  • 지체균열전파(DHC)는 중수로 압력관의 수명에 근 영향을 미치는 중요한 현상 중의 하나이다. 본 연구에서는 열처리를 통하여 압력관 재료인 Zr-2,5Nb의 기계적 성질, 집합조직을 변화시켜 각 인자들이 DHC에 미치는 영향을 조사하였다. 그 결과 지체균열전파속도(DHCV)는 항복강도와 경도와 비례한다는 것과 유사한 미세구조와 집합조직을 갖는 Zr-2.5Nb의 경우 항복강도와 Puls의 모델을 이용하여 지체균열전파속도(DHCV)를 예측할 수 있었다. 그리고 secondary cracking이 annealing한 시편들에서는 관찰되었으나 $\beta$열처리 후 급냉한 시편에서는 관찰되지 않았다. 이것의 수소화물 형상의 차이에 의한 것으로 생각된다.

  • PDF

Development of CANDU Pressure Tube Integrity Evaluation System : Its Application to Delayed Hydride Cracking and Blister (CANDU 압력관에 대한 건선성평가 시스템 개발-지체수소균열 및 블러스터 평가에의 적용)

  • 곽상록;이준성;김영진;박윤원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.174-182
    • /
    • 2002
  • The integrity evaluation of pressure tube is essential for the safety of CANDU reactor, and integrity must be assured when flaws or contacts between pressure tube and surrounding calandria tube are found. In order to complete the integrity evaluation, not only complicated and iterative calculation procedures but also a lot of data and knowledge are required. For this reason, an integrity evaluation system, which provides an efficient way of the evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec.? and FFSG issued by the AECL, and applicable for the evaluation of blister, sharp flaw and blunt notch. Delayed hydride cracking and blister evaluation modules are included in the general flaw and notch evaluation module. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube (중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

Development of the Probabilistic Integrity Evaluation Module of CANDU Pressure Tubes Using the $J_r-FAD$ ($J_r-FAD$를 이용한 캔두 압력관의 확률론적 건전성 평가 모듈 개발)

  • Ma, Young-Wha;Oh, Dong-Joon;Jeong, Ill-Seok;Kim, Young-Seok;Yoon, Kee-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.54-59
    • /
    • 2004
  • In this paper probabilistic fracture mechanics(PFM) approach is employed to evaluate the integrity of CANDU Zr-2.5Nb pressure tubes. Modified failure assessment diagram(Jr-FAD), plastic collapse, and critical crack length(CCL) approach are used for evaluating failure probability of the tubes. Jr-FAD was extended from the Kr-FAD because fracture of pressure tubes occurs in brittle manner due to hydrogen embrittlement of material by deuterium fluence. For developing the probabilistic integrity evaluation module, AECL procedures and fracture toughness parameters of EPRI were used.

  • PDF

Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals (합금속의 수소취성과 응력부식균열 고찰)

  • Kim, Young Suk;Cheong, Yong Moo;Im, Kyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.

CANDU압력관에 대한 건전성평가 시스템 개발 - 예리한 결함 및 둔한결함의 적용 -

  • 곽상록;김영진;이준성;박윤원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.851-856
    • /
    • 1998
  • 국내에서 상업운전중인 월성 원자로는 캐나다에서 개발한 CANDU형 원자로로 핵연료를 지지하는 핵연료 압력관이 사용되며, 핵연료 압력관은 원자로의 1차기기로 건전성확보가 매우 중요하다. 가동중 검사시 압력관에서 결함이 검출되면, 지속적인 사용을 위해서 결함의 건전성을 확보하여야하나, 그 평가절차가 매우 복잡하다. 본 연구에서는 핵연료 압력관 평가를 보다 신속하고 효율적으로 수행하기 위한 건전성 평가시스템을 개발하였다. 개발된 평가시스템은 예리한 결함 및 둔한 함에 대한 평가를 수행할 수 있으며, 피로균열평가, 지체수소균열평가, 불안정파괴평가, 파단전누설평가, 소성붕괴평가모듈을 수록하고 있다. 또한 개발된 시스템을 검증하기 위하여 캐나다 ECL에서 제시한 평가결과와 비교함으로서 본 시스템의 효용성을 검증하였다.

  • PDF

Effect of Hydride of the PHWR Pressure Tube on the LBB Evaluation (중수로 압력관의 수화물이 LBB평가에 미치는 영향)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • The aim of this study was to investigate the hydride embrittlement when the LBB evaluation was carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT toughness tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to 30$0^{\circ}C$). Both the transverse tensile and the fracture toughness tests showed the hydrogen embitterment clearly at RT but this phenomenon was disappeared while the test temperature arrived at 25$0^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement at the LBB evaluation made the LBB time short definedly. If the operating temperature, DHCV and LBB deterministic parameters such as A and m were known, LBB time could be estimated without the calculation of CCL.

Development of Integrity Evaluation System for CANDU Pressure Tube (CANDU 압력관에 대한 건전성 평가 시스템 개발)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.843-848
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tubes, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire integrity evaluation process. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). Various analysis methods are provided for the integrity evaluation of pressure tube. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  • PDF

Development of CANDU Pressure Tube Integrity Evaluation System;Its Application to Sharp Flaw and Blunt Notch (CANDU 압력관에 대한 건전성 평가시스템 개발;예리한 결함 및 둔한 노치에의 적용)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.206-214
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tube s. the integrity evaluation must be carried out. and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire: integrity evaluation process. For this reason. an integrity evaluation system, which provides efficient of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). This system does not only provide various databases including the 3-D finite element analysis results on pressure tubes, inspection data and design specifications but also is compatible with other commercial database software. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.