• Title/Summary/Keyword: 지질학적 시간

Search Result 230, Processing Time 0.035 seconds

Drought Assessment of Upland Crops using Soil Moisture, SPI, SGI (토양수분, 표준강수지수, 표준지하수위지수를 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Ok, Jung-Heun;Hwang, Seon-Ah;Hur, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.313-313
    • /
    • 2022
  • 일반적으로 가뭄은 특정지역에서 평균 이하의 강수량이 발생되는 현상으로, 강수량이 감소되면 토양수분, 하천수 수위, 저수지 수위, 지하수위 등이 순차적으로 감소한다. 수문학적 가뭄은 기상학적 가뭄 및 농업 가뭄에 비해 늦게 발현되는데, 이는 강수량의 부족이 토양수분, 하천수량, 지하수 및 저수지 수위 등과 같은 수문학적 시스템에 전이되는 시간이 소요되기 때문이다. 따라서, 가뭄 피해를 경감하기 위해 지하수위 변동성을 이용하여 지하수 함양량을 추정함으로써 효율적인 수자원 관리의 필요성이 증대되고 있다. 지하수위는 농촌 지하수 개발, 가뭄 및 홍수 예측 등 다양한 분야에 활용되며, 강수량에 의한 변화가 지표수에 비해 느리게 나타나고 토양을 통과하는 특성으로 인해 단기 및 장기간의 변화 경향이 나타난다. 미국 지질조사국 (United States Geological Survey)에서는 지하수위를 월 단위로 보통 이하 (Below-normal), 보통 (Normal), 보통 이상 (Above-normal) 3단계로 구분하여 분포도를 작성하고 전체 관측기간 중 25% 이상에서 보통 이하 (Below-normal)로 나타나면 가뭄으로 판단한다. 우리나라의 경우 지형, 유역을 고려한 지하수 수위 및 수질 현황과 변동성을 파악하기 위하여 전국 지하수위 관측망 688개소를 설치하고 운영 중에 있다. 또한, 농촌진흥청에서는 전국 농업기상대와 연계하여 토양수분관측망 (soil moisture monitoring network)을 구축하였으며, 표토 10 cm에 토양수분센서를 전국 168 지점에 설치하여 운영하고 있다. 본 연구에서는 강수량을 기반으로 산정한 표준강수지수 (Standardized Precipitation Index, SPI)와 지하수위를 기반으로 산정한 표준지하수위지수 (Standardized Groundwater Level Index, SGI), 토양수분관측망의 토양수분의 상관 분석을 수행하고자 한다. 밭작물 가뭄의 중요 요소인 토양수분 함량은 강수에 즉각적으로 반응하는 반면 지표수 및 지하수는 상대적으로 장기간의 강수에 영향을 받기 때문에, 본 연구의 결과는 향후 밭작물 지역의 가뭄 취약성을 관리하는 지표로 활용이 가능할 것으로 사료된다.

  • PDF

Physiological Changes in Related to Molt Cycle of Macrobrachium nipponense(De Haan) (징거미 새우, Macrobrachium nipponense(De Haan) 유생의 탈피주기와 관련한 생리적 변화)

  • SHIN Yun-Kyung;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.380-389
    • /
    • 1994
  • Larvae of the freshwater shrimp, Macrobrachium nipponense(De Haan) were reared in the laboratory under constant conditions ($25^{\circ}C,\;7\%0$ S), and their feeding rate, oxygen consumption, ammonia nitrogen excretion, and growth were measured at regular intervals during development from hatching to post larval stage. Growth was measured as dry weight, carbon, nitrogen, hydrogen, protein and lipid. All these physiological and biochemical traits revealed significant changes from instar to instar. Average feeding rate was high in intermolt stage of the molt cycle and it showed a bell-shaped pattern. Respiration(R) increased from hatching to post larval stage. Excretion(U) increased in intermolt phase of larvae and it showed a bell-shaped variation pattern, in all larval instars with a maximum near the middle of the molt cycle. Regression equations describing rates of feeding, growth, respiration and ammonia excretion as functions of time during individual larval molt cycles were inserted in a simulation model, in order to analyse time-dependent patterns of variation as well as in bioenergetic efficiencies. Carbon was initially increased and nitrogen showed a tendency to increase in premolt phase during individual molt cycles. Protein remained clearly the predominant biochemical constituent in larval biomass.

  • PDF

Analysis of GIUH Model using River Branching Characteristic Factors (하천분기 특성인자를 고려한 지형학적 순간단위도 모형의 해석)

  • Ahn, Seung-Seop;Kim, Dae-Hyeung;Heo, Chang-Hwan;Park, Jong-Kwon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.4
    • /
    • pp.9-23
    • /
    • 2002
  • The purpose of this research was to develop a model that minimizes time and money for deriving topographical property factors and hydro-meteorological property factors, which are used in interpreting flood flow, and that makes it possible to forecast rainfall-runoff using a least number of factors. That is, the research aimed at suggesting a runoff interpretation method that considers the river branching characteristics but not the topographical and geological properties and the land cover conditions, which had been referred in general. The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM). According to the result of examining calculated peak runoff, the Clark Model and the GIUH Model showed relative errors of 1.9~23.9% and 0.8~11.3%, respectively and as a whole, the peak values of hydrograph appeared high. In addition, according to the result of examining the time when peak runoff took place, the relative errors of the Clark Model and the GIUH Model were 0.5~1 and 0~1 hour respectively, and as a whole, peak flood time calculated by the GIUH Model appeared later than that calculated by the traditional Clark Model.

  • PDF

Study on the Possibility of Seawater Intrusion in the Ulsan Area Using Br : Cl Weight Ratios of Groundwater (지하수의 Br : Cl 함량비를 이용한 울산지역 해수침입 연구)

  • Cho, Byung-Wook;Lee, Byung-Dae;Yoon, Wook;Im, Hyun-Chul
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2003
  • Using 171 groundwater chemistry data, seawater intrusion in the Ulsan area was studied. The area near the downstream area of the Taehwa River shows the higher Cl concentrations(11,300 mg/L in maximum), whereas the Cl concentrations are generally low in the eastern coastal area maybe due to the geology of the area. When Cl concentrations are very low, groundwater shows Br:Cl weight ratios significantly deviating from the Br:Cl ratio of seawater($34.7{\times}10^{-4}$). However, Br:Cl ratios are very close to the value of seawater when Cl concentrations are higher than 100 mg/L. Eleven groundwater samples having very high Cl concentrations(>500 mg/L) show that ionic ratios for Ca, Mg, $SO_4$, $HCO_3$ and $SiO_2$ are considerably different from those of seawater. This indicates that the origin of the high Cl groundwaters occurring along the Taehwa River are likely to be the residual salines from the salterns previously located on the alluviums rather than the seawaters intruded recently. These waters seem to be accumulated in the sediments before the drastic expansion of the city. Considering the characteristics of the urban groundwater system where the inflow exceeds the outflow, it is anticipated that the high Cl concentration in the groundwater show a decreasing trend in the future.

Hydrogeological Characteristics of Groundwater in Small Watershed of the Nakdong River Basin (낙동강 하류 소유역의 지하수와 하천수의 수리지질학적 특성)

  • Sieun Kim;SeongYeon Jung;MoonSu Kim;Youn-Tae Kim;Yong-Hoon Cha;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.72-84
    • /
    • 2024
  • Recently, the vulnerability of water resources has been increasing owing to climate change, highlighting the importance of groundwater. In particular, the Nakdong River Basin, located in the southern part of Korea, experiences frequent water scarcity phenomena, such as droughts. This study analyzed the hydrogeological characteristics of the study area by examining groundwater and stream water in the Gwangrye Stream, downstream of the Nakdong River Basin, in August and October 2023. Therefore, we collected samples from 54 groundwater wells and five streams for water quality analysis. The results of the field tests indicated an increasing trend in electrical conductivity from upstream to downstream in the study area. Laboratory analyses confirmed that the concentration of Na increased from upstream to downstream more than that of Ca. In conclusion, both stream water and groundwater were influenced by anthropogenic contamination. These changes were closely related to land use in the study area. The upstream areas are primarily composed of forests, whereas the downstream areas are composed of industrial complexes, wastewater treatment facilities, and agricultural areas, which are likely to affect both stream water and groundwater.

High School Students' Conceptions on Landscape Formation and Geological Time (고등학생들의 지형 형성과 지질학적 시간 개념)

  • Lee, Yongkyu;Han, Shin;Jeong, Jinwoo;Park, Taeyoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.332-345
    • /
    • 2015
  • Earth science is the study to explore the planet in which we live. Among these earth science geology of the area it can be the most critical and important study. However, because of the size and scope is too broad temporal spatial eurona covered in geology is true that many students find difficult about the geology field. In this study, in conjunction with landscape formation of geologic time for the concept to be among the core areas of Geology examined the concept and recognize it as the destination for high school students. Is a test tool for the analysis was adapted for use by Jolley (2010) has developed LIFT (The Landscape Identification and Formation Test). Currently we fix the strip to match the country through a validity check of the curriculum. Results of the study were as follows: First, the ability to check the landscape and formation is expected to estimate the time and the liberal arts students was higher than the natural science students. The reason for this seems to be the influence of learning geographical subjects. Second, the concept of geological time was found to lack both natural science and liberal arts students. The reason is that the students in the previous process because it deals with the concept of geologic time from the top of Earth Science Education II seems to be because there was no chance of learning about geological time. Third, the results confirm the confidence of the students surveyed in the landscape formation time natural science students was higher than liberal arts students. The research measured gender boys higher than girls. Fourth, the students on the landscape and geological time was found to have a number of misconceptions. This appears to be due to the students to feel difficulty in thinking of the concept because the need to understand the abstract geologic time. Therefore, it is necessary just to hold misconceptions about the concept of geology students have through the study of the landscape and geological time.

Evaluation of Failure Probability for Planar Failure Using Point Estimate Method (점추정법을 이용한 평면파괴의 파괴확률 신정)

  • Park, Hyuck-Jin
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.189-197
    • /
    • 2002
  • In recent years, the probabilistic analysis has been used in rock slope engineering. This is because uncertainty is pervasive in rock slope engineering and most geometric and geotechnical parameters of discontinuity and rock masses are involved with uncertainty. Whilst the traditional deterministic analysis method fails to properly deal with uncertainty, the probabilistic analysis has advantages quantifying the uncertainty in parameters. As a probabilistic analysis method, the Monte Carlo simulation has been used commonly. However, the Monte Carlo simulation requires many repeated calculations and therefore, needs much effort and time to calculate the probability of failure. In contrast, the point estimate method involves a simple calculation with moments for random variables. In this study the probability of failure in rock slope is evaluated by the point estimate method and the results are compared to the probability of failure obtained by Monte Carlo simulation method.

Seismicity of the Korean Peninsula and Its Vicinity (한반도와 그 인접지역의 지진활동(地震活動))

  • Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1980
  • The seismicity of the Korean Peninsula and its vicinity is investigated temporally (2 A. D. to 1978) and spatially to evaluate the seismic risk and to understand the neotectonics around the peninsula. The study has been conducted using macrocosmic data obtained from historical literature, and instrumental records recorded by the Worldwide Network of Standardized Seismographs(WWNSS). The seismicity of the peninsula was active from the 13th through the 17th centuries. A seismic quiescence began at the onset of the 18th century, and has continued for the last 200 years. Presently, the seismicity region is found to be active again. The return periods are determined by a statistical method based upon the cumulative magnitude recurrence. They indicate that the seismic risk is greater in the south or west than in the north or east of the peninsula. Focal mechanism solutions demonstrate that the neotectonic stress distribution in the Japan Sea is greatly influenced by the subduction of the Pacific Plate under the Eurasian Plate or the Philippine Sea Plate, even though the predominate local paleotectonics is controlled by the spreading of the earth's crut.

  • PDF

Analysis of groundwater flow regime in Jincheon (진천지역 지하수 유동체계 분석)

  • Chung, Il-Moon;Kim, Ji-Tae;Lee, Deok-Su;Choi, Sung-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.236-236
    • /
    • 2011
  • 진천지역의 지하수 유동체계를 분석하기 위해 진천지역 내 530개 공의 지하수위를 1년간 관측하였다. 이중 360개 공에서는 분기별로 한번씩 총 4회, 130개 공에서는 월1회씩 총 12회 지하수위를 관측하였으며, 40개 공에 대해서는 1시간 간격으로 자동관측을 실시하였다. 관측결과를 수집하여 지하수위의 변동특성, 지하수위 분포, 지하수 심도분포 등을 실시하였으며, 이와 같은 지하수위 분석 결과를 바탕으로 지하수 유동체계를 분석하였다. 조사지역의 평수기 지하수위 분포에 대해 수리학적인 접근법(hydraulic approach) 및 동수역학적 접근법(hydrodynamic approach)에 근거하여 수리수두(hydraulic head) 및 전수두(total head)를 분석하여 2차원 및 3차원 수리경사도를 작성하였다. 이러한 지하수위 분포에 따른 분석 성과와 지형 및 수문지질을 고려하여 함양 및 배출지역을 분류하였으며, 이와 함께 기분석된 지하수위 등고선에 따른 유선망도를 작성하였다. 지하수는 지하수위의 표고 및 압력에 따른 위치 에너지 차에 의하여 대수층 매질을 통하여 유동하며 수두가 높은 곳에서 낮은 곳으로 일정한 수리경사를 갖고 지하수 등수위선에 연직 방향으로 형성된 유선을 따라 이동한다. 따라서 지하수의 유동방향은 지하수 수리경사 분석이 이루어진 8개 방향의 지하수위 경사 중 최대경사를 갖는 방향으로 지하수 유동이 발생하므로, 이를 지하수위 유동방향으로 결정하였다. 이와 같이 분류된 지하수 함양 중간 및 배출 지역과 지하수의 함양과 배출의 양적인 측면에 서 유동체계의 규모를 고려하여 조사 지역을 8단계로 구분하였다. 또한 조사지역의 지하수 유동체계를 종합적으로 규명하기 위하여 기 분석한 조사지역의 지하수위 등고선, 지하수위 등심도선, 지하수 수리경사, 지하수 유동방향 및 지하수 함양-배출체계와 지형기복, 그리고 주요 하천 등의 제반 요소를 중첩 분석하여 종합적으로 규명하고, 그 결과를 지하수 유동체계도로 작성하였다. 지하수 유동체계 분석결과는 수문지질 평가와 오염취약성 평가 및 지하수 관리 방안 수립에 활용될 수 있을 것으로 기대된다.

  • PDF

Enhanced Geothermal System Case Study: The Soultz Project (EGS 지열발전 연구사례: The Soultz Project)

  • Lee, Tae Jong;Song, Yoonho
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.561-571
    • /
    • 2013
  • Various experiences on enhanced geothermal system (EGS) has been accumulated from the Soultz project through various scientific experiments and research activities for more than 20 years since it started in the year of 1984 until the 1.5 MW Organic Rankine Cycle (ORC) binary power plant has been built up in Soultz-sous-$\hat{e}$ area, France. They have been applied to Cooper basin in Australia, Landau and Insheim in Germany and so forth. This report summaries the experiences from Soultz in the aspect of artificial reservoir creation, expecting to be helpful for reducing any trial and errors or unnecessary expenses in ongoing Korean EGS project in Pohang area, where the geological features are similar to Soultz area.