• Title/Summary/Keyword: 지질자료

Search Result 1,965, Processing Time 0.027 seconds

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

GIS technology for geotechnical estimation of ground foundation (지반의 지질공학적 특성분석을 위한 GIS 활용 연구)

  • 김윤종;김원영;유일현
    • Spatial Information Research
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • GIS technique was applied to identify the geotechnical characte¬ristic of subsurface in a study area, and has produced a Geotechnical Esti¬mat ion Index(GEI) map. Groundwater level, soi I depth & weathered zone, and engineering properties of soils & rocks, were incorporated in the map through GIS. EGIS(Environmental Geologic Information System), developed by ARC/INFO GIS system, was used for this work. Environmental geologic database by EGIS was verified to be effective in analysis of engineering geological properties of the subsurface. Quantitative analysis of environmental and geotechnical information enable to develop a scoring system of GEI model, which was developed through evaluation of each goelogical factor with respect to the other factors.

  • PDF

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea (제한된 천부자료와 시추코어분석을 통한 심부지질단면도 작성과 단층 인지법: 한반도 남동부 양산단층대 주변에서의 적용)

  • Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Spatial Integration of Multiple Data Sets regarding Geological Lineaments using Fuzzy Set Operation (퍼지집합연산을 통한 다중 지질학적 선구조 관련자료의 공간통합)

  • 이기원;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • Features of geological lineaments generally play an important role at the data interpretation concerned geological processes, mineral exploration or natural hazard risk estimation. However, there are intrinsically discordances between lineaments-related features extracted from surficial geological syrvey and those from satellite imagery;nevertheless, any data set contained those information should not be considred as less meaningful within their own task. For the purpose of effective utilization task of extracted lineaments, the mathematical scheme, based on fuzzy set theory, for practical integration of various types of rasterized data sets is studied. As a real application, the geological map named Homyeong sheet(1:50,000) and the Landset TM imageries covering same area were used, and then lineaments-related data sets such as lineaments on the geological map, lineaments extracted from a false-color image composite satellite, and major drainage pattern were utilized. For data fusion process, fuzzy membership functions of pixel values in each data set were experimentally assigned by percentile, and then fuzzy algebraic sum operator was tested. As a result, integrated lineaments by this well-known operator are regarded as newly-generated reasonable ones. Conclusively, it was thought that the implementation within available GISs, or the stand-alone module for general applications of this simple scheme can be utilized as an effective scheme can be utilized as an effective scheme for further studies for spatial integration task for providing decision-supporting information, or as a kind of spatial reasoning scheme.

시범 충적층 수문지질도 작성ㆍ연구 - 부여 군수리 시범 지역을 중심으로 -

  • 박재현;김진삼;김형수;석희준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.438-442
    • /
    • 2004
  • 국가적인 수자원 다변화 정책의 일환으로 충적층을 활용한 강변여과, 지하수댐, 직접 함양 등의 다양한 충적층 지하수 인공함양 활용 가능성이 점차적으로 증대되고 있지만, 국내에서는 이를 구체적으로 활용하기 위하여 필요한 충적층 지하수의 개발 및 관리를 위한 충적층 수문지질도를 찾아보기 힘든 실정이다. 따라서, 본 발표에서는 부여 군수리 지역을 시범 대상 지역으로 선정하여 수자원 개발을 위한 충적층 활용 가능성을 평가하기 위해 기본적으로 필요한 지형적, 지질학적, 수리적 및 환경적 요소들을 포함하는 시범 충적층 수문지질도를 작성하였다. 본 충적층 수문지질도에는 지하수위 및 수질 변화, 지표 토양조건 및 지하 대수층 분포 등를 추정할 수 있는 다양한 자료들을 포함하고 있으며, 대부분의 이들 자료는 직접 현장 조사를 통해 획득되었다. 이러한 시범 충적층 수문지질도의 작성은 향후 충적층 지하수의 개발 및 관리시에 기본 자료로 활용될 것이다. 그러나, 앞으로 보다 정밀하고 효용성 있는 충적층 수문지질도 작성을 위해서는 이번 시범 작성을 참조하여 보다 많은 개선과 표준화가 요구된다.

  • PDF

Geological Map Database Construction Using GIS (GIS를 이용한 지질도 데이터베이스 구축에 관한 연구)

  • 이사로;최위찬;민경덕
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.147-153
    • /
    • 1999
  • Geological map and data are needed for land use planning, resources development, geological hazard prevention, environment protection and education, Since the nationwide geological database in Korea has not been constructed yet, there are many problems in using the geological map and data. There are many problems such a stratigraphy unestablishment, map conservation and edge matching in geological paper map. Therefore it is difficult to construct the geological map database, but the geological map database must be constructed as soon as possible as one of national thematic map. In this study, geological maps of pilot area such as Ansung geological map on a scale of 1:50,000, Busan on a scale of 1:250,000, Namchang on a scale of 1:25,000 and the whole Korean peninsula on a scale of 1:1,000,000 were designed and constructed to database using Geographic Information System(GIS). In addition the geological map management program was developed by GIS program. The digital geological maps were produced using the constructed geological database. The database could be of access through Internet World Wide Web(WWW) environment and be distributed in Compact Disk(CD).

  • PDF