• Title/Summary/Keyword: 지질공학모형

Search Result 105, Processing Time 0.022 seconds

Study on Permeability, Optimum Yield and Long-term Stability in Alluvial Well with Filter Layer Change (충적우물에서 필터층 변화에 따른 투수특성, 적정양수량 및 장기적 안정성에 대한 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.101-115
    • /
    • 2018
  • This study was carried out to evaluate the effects of various filter conditions on unconfined aquifer (alluvial aquifer). We made model test device which has filter layer, pumping well and observation well which consist of sand layer and gravel layer to test. Step drawdown test and long term pumping tests were carried out using the device. The permeability characteristics of each test group were confirmed and the optimal yield was calculated. As a result of comparing the optimal yield of double filter and single filter in sand, dual-filter SD-300 was valued at 216.8 % higher final optimal yield than single-filter SS-300. Comparing the dual filter SD-300 and the single filter SS-100 with a thin filter layer, dual-filter SD-300 was valued at 709.2% higher final optimal yield than single-filter SS-300. As a result of analysis of optimal yield change over time, It was confirmed that the ratio of optimal yield of single filter and dual filter increase over time. In order to evaluate the long-term change in water intake efficiency, we considered the point at which the initial optimal yield was reduced by 50%. The dual filter SD-300 is about 351.1% higher than SS-300, which is the same thickness filter, and about 579.0% higher than SS-100. From these results, Assuming that the point at which the initial quantity of water intake is reduced to 50% is the well life, double filters are expected to increase their lifespan by about 3.5 times over single filters of the same thickness and by about 5.8 times over typical single filter. These results can be used to design wells to river bank filtration or filtered seawater. In addition, it is possible to clarify the effect of the double filter through the comparison with the future field test results.

Experimental Study on the Effect of Filter Layers on Pumping Capacity and Well Efficiency in an Unconfined Aquifer (자유면대수층에서 필터층이 취수량 및 우물효율에 미치는 영향에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.405-416
    • /
    • 2017
  • This study evaluated a model unconfined aquifer comprising a sand or gravel layer, a filter layer, a pumping well, and an observation well. The model was employed in step drawdown tests and then used to assess the permeability of each test tank. The optimal yield and well efficiency were then calculated. Evaluation of yield by step in sand layer filters of equal thickness gave optimized watering rates of 22.03 L/min in the double filter and 19.71 L/min in the single filter. The double filter's yield was 115.0% that of the single filter. A comparison of double and single filters, each 10 cm thick, showed the double filter to have a maximum yield of 182.7%. Yields for the gravel layer were 73.56 L/min for a double filter and 65.47 L/min for a single filter of the same thickness; the former value is 112.3% of that of the latter. Comparison of double and single filters with 10-cm-thick gravel layers revealed that the double filter had a maximum yield of 160.9%. Results for sand wells showed the double filter to have a maximum efficiency of 70.4% and the single filter to have a minimum efficiency of 37.1%. Gravel-layer well efficiencies were >66.5% for both double and single filters (each 30 cm thick), but only 22.5% for a 10-cm-thick single filter. This study confirms that permeability improved as the filter material became thicker; it also shows that a double filter has a higher yield and well efficiency than a single filter. These results can be applied to the practical design of wells.

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF