• Title/Summary/Keyword: 지질․지체구조

Search Result 62, Processing Time 0.033 seconds

Paleomagnetic Studies in Korea (한국의 고지자기학 연구)

  • Suk, Dong-Woo;Lee, Youn-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.385-402
    • /
    • 2006
  • Paleomagnetic studies have made remarkable contributions to the understanding of many geological aspects of Korea for the last 40 years, such as the collisional processes of Korean Peninsula, the development of basins in relation with fault systems, the opening and evolution of the East Sea, and the reconstruction of paleogeographic configuration. These contributions have played an important role in the escalation of geology in Korea by elucidating the mechanisms on Processes of fragmentation and amalgamation of the Peninsula, mountain building, igneous activities, metamorphism, and folding and faulting based on the view of plate tectonics. This paper is intended to introduce and summarize the paleomagnetic research papers designed to decipher the tectonic processes of Korea, according to the geologic ages of the studied rocks.

Metallogenesis in Korea -Explanation of the Metallogenic Map of Korea- (한국(韓國)의 광상생성도(鑛床生成圖))

  • Kim, Seon-Eok;Hwang, Duk-Hwan
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.73-94
    • /
    • 1986
  • In order to make preparation of the Metallogenic Map of Korea, the writer have to collect and review the data of general geology and ore deposits of Korea which have been published up to date. The geology of Korea has been briefly simplified and grouped into the 15 formations so as to provide the base geologic map for making the Metallogenic Map of Korea. Geologic provinces of south Korea are divided into four, that is, Gyeonggi·Ryeongnam province, Ogcheon geosynclinal province, Gyeongsang basin province and Tertiary province. In the view of tectonics and related granites, the major orogenies in south Korea are as follows; Ryeongnam orogeny, Taebaeg disturbance, post-Sangweon disturbance, post-Joseon disturbance, Bulgugsa disturbance and Yeonil disturbance. Metallogenic epochs might coincide with the period of syntectonic or subsequent igneous rock intrusions accompanied with the above listed orogenies and disturbances. Thus, metallogenic epochs that are certain in Korea so far are; Precambrian periods, Paleozoic periods, Jurassic to early Cretaceous periods, late Cretaceous to early Tertiary periods, Quaternary periods and age-unknown periods. The Metallogenic Map of Korea shows 444 ore deposits and/or mines by symbols on a background adopted from the existing geologic and tectonic map. The 444 metallic and non-metallic deposits are categorized by the commodities they contain, size, geologic environment, mineralized age and mineralogic nature.

  • PDF

A study of Kem County earthquake (Kern County 지진에 대한 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.155-165
    • /
    • 1992
  • The purpose of this study is to evaluate compatability of seismic source characteristics of the Kern County earthquake to those of Korean Peninsula seismotectonics. The compatability could be used to make Korean type response spectrum from the strong ground motions observed from the assingned earthquake. The July 21, 1952, Kern County, California, earthquake is the largest earthquake to occur in the western U.S. since 1906, and the repeat of this event poses a significant seismic hazard. The Kern County event was a complex thrusting event, with a surface rupture pattern that varied from pure leftlateral strike-slip to pure dip-slip. A time dependent moment tensor inversion was applied to ten observed teleseismic long-period body waves to investigate the source complexity. Since a conventional moment tensor inversion(constant geometry through time) returns a non-double-couple source when the seismic source changes(fault orientation and direction of slip) with time, we are required to use the time dependent moment tensor which allows a first-order mapping of the geometric and temporal complexity. From the moment tensor inversion, a two-point seismic source model with significant overlap for the White Wolf fault, which propagates upward(20 km to 5 km) from SW to NE, fits most of the observed seismic waveforms in the least squares sense. Comparison of P, T and B axes of focal mechanisms and focal depths suggests that seismic source characteristics of the Kern County earthquake is consistant with those of Korean Peninsula Seismotectonics.

  • PDF

Geosites, Geoheritages and Geotrails of the Hwaseong Geopark, the Candidate for Korean National Geopark (화성 국가지질공원 후보지의 지질명소, 지질유산 그리고 지오트레일)

  • Cho, Hyeongseong;Shin, Seungwon;Kang, Hee-Cheol;Lim, Hyoun Soo;Chae, Yong-Un;Park, Jeong-Woong;Kim, Jong-Sun;Kim, Hyeong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.195-215
    • /
    • 2019
  • Geopark is a new system for development of the local economy through conservation, education, and tourism that is an area of scientific importance for the earth sciences and that has outstanding scenic values. The Hwaseong Geopark, the candidate for Korean National Geopark is composed of 10 geosites: Gojeongri dinosaur egg fossils, Ueumdo, Eoseom, Ddakseom, Goryeom, Jebudo, Baengmiri Coast, Gungpyeonhang, Ippado and Gukwado geosites. In this study, geosites, geoheritages, and geotrails of the Hwaseong Geopark were described in detail, and the value and significane as a geopark were also discussed. The geology of the Hwaseong Geopark area belonging to the Gyeonggi Massif consists of the Precambrian metamorphic and meta-sedimentary rocks, Paleozoic sedimentary and metamorphic rocks, Mesozoic igneous and sedimentary rocks, and Quaternary deposits, indicating high geodiversity. The Gojeongri Dinosaur Egg Fossils geosite, designated as a natural monument, has a geotrail including dinosaur egg nest fossils, burrows, tafoni, fault and drag fold, cross-bedding. Furthermore, a variety of infrastructures such as eco-trail deck, visitor center are well-established in the geosite. In the Ueumdo geosite, there are various metamorphic rocks (gneiss, schist, and phyllite) and geological structures (fold, fault, joint, dike, and vein), thus it has a high educational value. The Eoseom geosite has high academic value because of the orbicular texture found in metamorphic rocks. Also, various volcanic and sedimentary rocks belonging to the Cretaceous Tando Basin can be observed in the Ddakseom and Goryeom geosites. In the Jebudo, Baengmiri Coast, and Gungpyeonghang geosites, a variety of coastal landforms (tidal flat, seastacks, sand and gravel beach, and coastal dunes), metamorphic rocks and geological structures, such as clastic dikes and quartz veins can be observed, and they also provide various programs including mudflat experience to visitors. Ippado and Gukwado geosites have typical large-scale fold structures, and unique coastal erosional features and various Paleozoic schists can be observed. The Hwaseong Geopark consists of outstanding geosites with high geodiversity and academic values, and it also has geotrails that combine geology, geomorphology, landscape and ecology with infrastructures and various education and experience programs. Therefore, the Hwaseong Geopark is expected to serve as a great National Geopark representing the western Gyeonggi Province, Korea.

Tectonic Features of a Triple-Plate Junction in Hokkaido Using Local Seismic Tomography

  • Kim, So-Gu;Bae, Hyung-Sub;Pak, Sang-Pyo
    • Proceedings of the KSEG Conference
    • /
    • 2005.04a
    • /
    • pp.101-106
    • /
    • 2005
  • The three-dimensional Tomography developed by Kim and Bae(2004) was applied to 64,024 P and 64,618 S wave arrival times observed at 238 seismic stations for 4050 local earthquakes in the depth range from 0 to 300 km in and around Hokkaido, Japan. High and low velocity zones for Vp/Vs were clearly imaged in and around Hokkaido. The upper seismic planes of the double seismic zone (DSZ) were found in the subducted Pacific Plate beneath Hokkaido at depth of 40- 80 km, which produced high seismicity around Hokkaido. The findings of high Vp/Vs anomalies beneath the Moho discontinuity supports an evidence of a surface triple-collision hypothesis prepared by Moriya(1994) that the Kuril Arc(Okhotsk Plate or North American Plate) is colliding against the NE Japanese Arc(Amurian Plate or Eurasian Plate), along and beneath the Hidaka Mountain Range, and at the same time the Pacific Plate is subducting into these two plates, making an equilibrium of tectonic forces along the Hikada Mountain Range (HMR) corner and the central tectonic axis(142 ~ 143E) in Hokkaido. The low Vp and Vs were also found in east and west along the central tectonic axis in which the focal mechanism represents the extensional forces. These phenomena are also consistent with low Bouguer gravity anomalies in this region. It is understood why most of great earthquakes occurred outside Hokkaido where the balance of tectonic forces are breaking from the triple junction of three tectonic forces in Hokkaido.

  • PDF

A Study of Regional Geomorphology in the Chugaryeong Tectonic Valley, Central Korea (추가령 구조곡의 지역지형 연구)

  • Lee, Min-Boo;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.473-490
    • /
    • 2016
  • This study aims to analyze the regional geomorphology of the Chugaryeong Tectonic Valley which has been one of the most important areas for Korean geomorphological research. Though the Chugaryeong Tectonic Valley has been thought important for the tectonic settings and orographic processes in Korea, geomorphological and geological discussions still are sustaining for finding out evidences of the settings. The Chugaryeong valley region has many geomorphic themes such as tectonic structure, volcanics, river, mountain, terrace, lake and sediment layers. The research of the valley focuses on the comprehensive analysis of the previous references mainly including geomorphic naming, geomorphology and geology, and history of the study for estimating the origin of tectonic valley, formation of the lave plateau, change of river structure by dissection, restoration of the landform before lava eruption, and the processes and age dating of the various landforms. Conclusively, the Chugaryeong Tectonic Valley may be recognized as the linear region of the tectonic and volcanic landforms with other various applied geomorphic settings.

  • PDF

Deformational Phased Structural Characteristics of the Hadong Southern Anorthosite Complex and its Surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 남부 회장암복합체와 그 주변지역의 변형단계별 구조적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.179-195
    • /
    • 2013
  • The study area, which is located in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of the Precambrian Hadong southern anorthosite complex (HSAC), the Jirisan metamorphic rock complex (JMRC) and Cretaceous sedimentary rock which unconformably covers them. Lithofacies distribution of the Precambrian constituent rocks mainly shows NS and partly NE trends. This paper researched deformational phased structural characteristics of HSAC and JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area was formed through at least three phases of ductile deformation. The first phase ($D_1$) of deformation happened due to the large-scale top-to-the SE shearing, and formed the sheath or "A"-type fold and the regional tectonic frame of NE trend in the HSAC and JMRC. The second phase ($D_2$) of deformation, like the $D_1$ deformation, regionally occurred under the EW-directed tectonic compression, and most of the NE-trending $D_1$ tectonic frame was reoriented into NS trend by the active and passive folding, and the persistent and extensive ductile shear zone (Hadong shear zone) with no less than 2.3~1.4 km width was formed along the eastern boundary of HSAC and JMRC through the mylonitization process. The third phase ($D_3$) of deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It means that the distribution of Precambrian lithofacies showing NE trend locally and NS trend widely in this area is closely associated with the $D_1$ and $D_2$ deformations, respectively, and the NS-trending Hadong shear zone in the eastern part of Hadong northern anorthosite complex, which is located in the north of Deokcheon River, also extends into the HSAC with continuity.

Horizontal Strain of the Crust in Korea for the Past 80 Years from Geodetic Observations (측지측량 결과로부터 조사된 과거 80년간 한국에서 지각의 수평변형)

  • 최재화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.49-61
    • /
    • 1997
  • 본 연구에서는 한국에서 구삼각강(1910-1915)과 정밀1차측지망(1975-1994)을 사용하여 지각변동량을 계산하고, 지체구조의 일반적인 변형패턴을 기하학적으로 조사하였다. 본 연구에서는 변형량을 계산하기 위하여 2차원의 무한소 변형모델을 설정하였으며, 수평변형량은 구좌표와 정밀1차측지망의 정밀동시강조정을 자유강조정법에 의하여 최초로 실시하여 일괄성있는 신좌표를 사용하여 계산된 측지선의 변화량으로 추정하였다. 변형설계결과로부터 1910년부터 1994년까지 누적된 변형량은 평균(1.07$\pm$0.5)$\times$10-5이고, 이로부터 년변형속도는 (0.13$\pm$0.063)$\mu$/yr 임을 알 수 있었으며, 변형의 경향을 보면 변형량이 10$\mu$ 보다 큰 값이 한반도의 동해안 지역에 분포하고 있으며, 서부쪽에는 10$\mu$이하의 값이 분포하고 있는 것으로 나타나 한반도의 동해안에서 지진의 발생빈도가 높은 것을 고려한다면 본 연구로부터 계산된 결과는 장래의 연구를 위해 중요한 데이터가 될 것이다. 본 연구에서 얻은 주변형축의 방향은 전국적으로 $77.6^{\circ}$$\pm$$13.5^{\circ}$방향임을 보여주고 있어 한반도의 지각은 ENE~WSW방향으로 압축상태에 있음을 알 수 있었으며, 이 결과는 지질학자나 지진학자들의 연구로부터 얻은 결과와 P-축의 방향이 일치하고 있고, 최대전단변형 이론과 일치하고 있는 것으로 나타났다.

  • PDF

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 까치-1공의 층서)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.473-490
    • /
    • 2007
  • Strata of the Kachi-1 well, Kunsan Basin, offshore western Korea, were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the well: Triassic, Late Jurassic-Early Cretaceous, Early Cretaceous, Late Cretaceous, and Middle Miocene units. Each unit represents a tectono-stratigraphic unit that provides time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of the Kunsan Basin. In the late Late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of these wrench faults until the Late Cretaceous caused a mega-shear in the basin, forming a large-scale pull-apart basin. However, in the Early Tertiary, the Indian Plate began to collide with the Eurasian Plate, forming a mega-suture zone. This orogenic event, namely the Himalayan Orogeny, continued by late Eocene and was probably responsible for initiation of right-lateral motion of the Tan-Lu fault system. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the Kunsan Basin. Thus, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin. After the Oligocene, the Kunsan Basin has maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basin.