• Title/Summary/Keyword: 지진 안정성

Search Result 247, Processing Time 0.028 seconds

Robust Control of Earthquake Responses considering Higher Mode Uncertainty (고차 모우드 불확실성을 고려한 지진응답의 강인제어)

  • 고현무;박관순;박원석;조익선
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.99-108
    • /
    • 2000
  • 구조물의 능동제어 시스템에서 제어기 설계에 사용되는 구조계의 모델과 실구조계의 차이는 시스템의 성능저하 및 불안정성을 유발할 수 있다 이연구에서는 무시된 고차모우드와 같이 주파수영역에서 표현되는 비구조적 불확실성에 대하여 시스템의 안정성을 보장하도록 강인성을 가지는 LQG/LTR제어이론을 사용하여 구조물의 지진응답제어에 효과적으로 사용할 수 있는 제어기 설계방법을 제시한다 특히 고층건물이나 교탑과 같은 구조물의 지진응답 제어에 적용할 수 있도록 각층의 절대 가속도를 측정변수로 층간상대변위를 제어변수로 설정하여 최적제어기를 구성한다 El Centro 지진압력을 받는 6자유도 전단빌딩모델에 대하여 제어기를 설계하거 수치모사를 수행하여 제시한 제어기가 안정도-강인성을 가지고 지진응답제어에 효과적임을 보인다.

  • PDF

Development on Integrated Information System for Preventing National Earthquake based on Real-Time Connection of Underground Informations (지하정보 실시간 연계 기반의 국가지진방재 통합정보시스템 개발)

  • Seok, Cheolho;Jang, Yonggu;Song, Jihye;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.43-51
    • /
    • 2014
  • Recently, National Emergency Management Agency constructs integrated information system for preventing national earthquake based on underground information. In the past, there are numerous difficulties in construction and management of underground information, because underground information is constructed by each management agency. But a link and application of underground information are available because of government 3.0. This study shows the integrated information system for preventing national earthquake based on real-time link of underground information. The integrated information system for preventing national earthquake developed in this study consists of boring information input modules, underground information search/analysis modules based on V-world tile map, user authority management modules, user management modules and real-time liaison interface modules. Also, this study proposes enhancement plan to construct integrated information system for preventing national earthquake stably and strongly. Stability test conduct on stability of data storage, system stability and consistency of processing speed test results show stability of the integrated information system for preventing national earthquake is high.

Stability of Analytical Fragility Curve of Bridge on Earthquake (지진의 변화에 따른 교량의 해석적 손상도 곡선의 안정성)

  • Lee, Jong-Heon;Lee, Soo-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.145-152
    • /
    • 2009
  • In performing a risk analysis on structure for earthquake, it is imperative to identify the vulnerability of structures associated with various stages of damage. And the earthquake resisting capability is needed for structures like bridge. So the damage analysis of bridges with or without isolator for earthquake effects is necessary. In this paper, the risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is performed using fragility curves to assure the earthquake resisting capability of the structures. And, the stability of fragility curve is investigated with respect to input earthquake.

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami (지진 및 지진해일파 작용하의 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Ha, Sun-Wook;Lee, Kui-Seop;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.41-54
    • /
    • 2011
  • The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.

Stability of Analytical Fragility Curve of Bridge on Elastic Modulus (탄성계수의 변화에 따른 교량의 해석적 손상도 곡선의 안정성)

  • Lee, Jong-Heon;Kang, Shin-Yeol;Kim, Tae-Hyeong;Lee, Soo-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.175-182
    • /
    • 2008
  • In performing a risk analysis of structure for earthquake, it is imperative to identify the vulnerability of structures associated with various stages of damage. And the earthquake resisting capability is needed for structures like bridge. So the damage analysis of bridges with or without isolator for earthquake effects is necessary. In this paper, the risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is performed using fragility curves to assure the earthquake resisting capability of the structures. And, the stability of fragility curve is investigated with respect to elastic modulus.

Evaluation of Stability of Quay Wall Considering Overtopping of Tsunami (지진해일파의 월파를 고려한 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.31-45
    • /
    • 2012
  • This study was conducted to estimate the stability of a quay wall in case of wave overtopping under the combined action of an earthquake and tsunami using limit equilibrium method. The tsunami force was calculated by using a numerical program called TWOPM-3D (3-D one-field Model for immiscible TWO-Phase flows). Especially, the wave force acting behind the quay wall after a tsunami wave overtopping was estimated by treating back fill as a permeable material. The stability of the quay wall was assessed for both the sliding and overturning modes under passive and active conditions. The variation in the stability of the quay wall with time was determined by parametric studies, including those for the tsunami wave height, seismic acceleration coefficient, internal friction angle of the soil, wall friction angle, and pore water pressure ratio. When the earthquake and tsunami were considered simultaneously, the tsunami induced wave overtopping increased the stability of the quay wall under the passive condition, but in the active condition, the safety factors decreased.

Manbridge Crane의 지진해석에 관한 연구

  • 윤정방;박창호
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.24-28
    • /
    • 1991
  • 본 연구용역에서는 반도기계주식회사의 의뢰에 의거하여 Manbridge Crane의 지진하중에 대한 구조물의 안전성을 평가하였다. 구조해석은 유한요소 모형을 사용하여 사하중, 활하중 및 OBE(Operating Basis Earthquake)와 SSE(Safe Shut-down Earthquake)의 지진하중에 관한 해석을 수행하였다. Crane설치지점의 층응답스펙트럼을 입력으로 한 응답스펙트럼해법으로 지진해석을 수행하였다. Trolley의 위치와 정격하중의 유무에 따라서 5개의 구조모형을 작성하여 해석을 수행하였으며, 지진해석에는 35개의 자유진동모드가 고려되었다. 구조해석을 통하여 1) 구조부재의 과도응력 발생여부, 2) 보강재의 좌굴 가능성, 3) Hoist Rope의 안전성, 4) Crane의 전도의 가능성 및 Seismic Lug의 안전성, 5) 지진하중에 대한 제동력, 6) Crane의 주행 Rail로부터의 탈선여부, 7) Traversing Rail의 수직처짐, 8) 주행 Rail 및 End Stopper의 Anchor Bolt의 안정성, 9) Fuel Basket과 Handrail의 안전성을 검토하였다. 해석결과를 바탕으로 설계시방서에서 제시한 모든 설계요구조건을 만족시킬 수 있도록 수직 Frame의 보강부재를 보강하고, Hoist Rope 용량을 증가시키도록 제안하였다.

  • PDF

Dynamic Resistance of Anchor using Blasting Test and Numerical analysis for Earthquake (발파실험과 내진해석을 통한 Anchor의 동적 저항성에 관한 연구)

  • Choi, Kyung-Jip;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.500-511
    • /
    • 2017
  • Recently, as earthquakes have occurred in Gyeongju, interest in the stability of structures against vibration from earthquakes has increased. In Korea, the capacity of load resistance is mainly considered in the design of anchors. However, the vibration resistance characteristics of anchors have not been fully elucidated. The traditional type of anchor, which is a frictional resistance anchor, is often reported to fail due to vibration in construction procedures, such as blasting. The expansion type of anchor, on the other hand, could have more resistance to vibration but its capability of demonstrating vibratory resistance has to be investigated. In order to verify the vibratory resistance characteristics of expansion anchors against blasting and earthquake vibration, field tests and numerical analyses for seismic wave were performed. Field blasting test results show that the expansion anchor has better capability against vibratory load than does the frictional type anchor. Numerical analysis to earthquake also show that the expansion type anchor provides more resistance than does the frictional type anchor.

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.

A Study on the Quakeproof Top-Base (내진형 팽이말뚝기초에 대한 연구)

  • Park, Sung-Jin;Baek, Joo-Eun;Jeon, Du-Jun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.229-230
    • /
    • 2017
  • 본 논문에서는 최근 대두되고 있는 지진에 대한 문제를 담고 있다. 우리나라에서는 2016년 발생한 경주지진(진도 5.8)을 계기로 내진설계기준이 한층 강화되고 의무화 되었으며 이로써 내진 성능을 가진 기초 형식이 더욱 필요하게 되었다. 내구성, 경제성, 시공성, 내진 등이 뛰어난 설계기초 공법의 하나로 팽이말뚝 기초공법이 있으나 일반 팽이말뚝기초 공법으로는 지진 시 발생하는 지반 진동으로 인한 구조물 피해를 충분히 감당하기 어렵다. 따라서, 팽이말뚝기초의 장점(경제성, 안정성, 시공성)을 살리면서 구조물과 팽이말뚝 사이에 쇄석층을 두어 진동 전달을 차단하고, 팽이말뚝 상호를 힌지로 연결하여 지반 변형에 따라 유기적으로 변형을 갖게 하고 지반의 지지력 상승과 침하량 감소의 효과를 볼 수 있고 지진시 진동 충격을 흡수하여 지진 시 피해를 줄일 수 있는 내진형 팽이말뚝을 개발하고자 한다.

  • PDF