• Title/Summary/Keyword: 지진 규모

Search Result 572, Processing Time 0.024 seconds

Estimation of Earthquake Magnitude Using High-Frequency Energy Radiation Duration: Application to Regional Earthquakes (고주파 에너지 방사지속시간을 이용한 지진규모산정법 : 지역지진에의 적용)

  • Yun, Won-Young;Park, Sun-Cheon;Jeon, Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.254-260
    • /
    • 2011
  • We studied magnitude determination method using high-frequency energy radiation duration to calculate rapidly magnitude of large earthquakes that occurred around Japan. Fourteen earthquakes were analyzed using Korea Meteorological Administration (KMA) data. We calculated duration of high-frequency energy radiation with 2~4 Hz band pass filter at each data and estimated magnitude. As a result, duration becomes longer as magnitude becomes larger and the magnitude estimated using regional earthquake data are similar to that using teleseismic data. Therefore when an earthquake occurs around Japan we will be able to estimate the magnitude in a relatively short time using KMA data and it may be possible to determine if the earthquake is large enough to produce tsunami.

Confidence Interval Estimation of the Earthquake Magnitude for Seismic Design using the KMA Earthquake Data (기상청 지진 자료를 이용한 내진설계 지진규모의 신뢰구간 추정)

  • Cho, Hong Yeon;Lee, Gi-Seop
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2017
  • The interest on the potential earthquake magnitude and the request on the earthquake-resistant design examination for coastal structures are emerged because of the recently occurred magnitude 5.8 earthquake in Gyeoung-Ju, Korea. In this study, the magnitude and its confidence intervals with the return periods are estimated using the KMA earthquake magnitude data (over 3.5 and 4.0 in magnitude) by the non-parametric extreme value analysis. In case of using the "over 4.0" data set, the estimated magnitudes on the 50- and 100-years return periods are 5.81 and 5.94, respectively. Their 90% confidence intervals are estimated to be 5.52-6.11, 5.62-6.29, respectively. Even though the estimated magnitudes have limitations not considering the spatial distribution, it can be used to check the stability of the diverse coastal structures in the perspective of the life design because the potential magnitude and its confidence intervals in Korea are estimated based on the available 38-years data by the extreme value analysis.

Estmation of Magnitude of Historical Earthquakes Considering Earthquake Characteristics and Aging of a House (지진특성 및 가옥의 노후도를 고려한 역사지진의 지진규모 추정)

  • 서정문;최인길
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • The magnitudes of historical earthquake records related with house collapses are estimated considering the magnitude, epicentral distance, soil condition and aging of a house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km-350 km and hard and soft soil condition were generated. Nonlinear dynamic analyses were performed for a traditional three-bay-straw-roof house. The aging effect of the house was modeled as such that the lateral loading capacity of wooden frames represented by hysteretic stiffness was decreased linearly with time. The house was idealized by one degree-of-freedom lumped mass model and the nonlinear characteristics of wooden frames were modeled by the Modified Double-Target mode. For far field earthquakes, minor damages were identified regardless of magnitude, soil condition and aging of the house. For intermediate field earthquake, earthquake magnitude greater than 6.5 caused severe damages in soil sites. For near field earthquake, severe damages occurred for magnitude greater than 6.5 regardless of soil condition and aging of the house. It is estimated that the magnitude of historical earthquakes is about 6.2. An empirical equation of magnitude-intensity relationship suitable to Korea is suggested.

  • PDF

Seismic Moment Conversion of instrumented Earthquakes in and around the Korean Peninsula (Ⅰ):from$m_b$or$m_s$to$m_0$ (한반도 및 인근 지역 계기지진의 지진모멘트 환산(Ⅰ):$m_b$또는 $m_s$에서$m_0$)

  • No, Myeong-Hyeon;Lee, Sang-Guk;Choe, Gang-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • conversion equations to calculate seismic moment(M_0) from body-wave magnitude(m_b), surface-wave magnitude(M_s), or both were derived by using 50 earthquakes occurred within 32~44°N and 123~133°E whose M_0 were determined together with m_b or M_s. We divided those earthquakes into the deeper and the shallower ones based on the reference focal depth of 70 km. The unit of M_0 is dyne-cm. In case of M_s, the deeper earthquakes exhibit the higher seismic moment than the shallower ones. Standard deviations associated with conversion equations for deeper and shallower earthquakes are 0.25 and 0.16, respectively, in moment magnitude. , for deeper earthquakes , for shallower earthquakes. In case of m_b, the dependence of conversion equation on focal depth is not clearly observed. Associated standard deviation is 0.28 in moment magnitude. In case that both m_b and M_s were determined, a new magnitude, , were defined for shallower earthquakes to derive a more stable conversion equation. Associated standard deviation is 0.14 in moment magnitude. Conversion equations above can be used to unify the earthquake size into a single magnitude type, i.e., moment magnitude, in and around the Korea Peninsula.

  • PDF

The Relation Between Local Magnitude and Moment Magnitude in the Southern Part of the Korean Peninsula (한반도 남부 지역의 지역규모와 모멘트규모의 관계)

  • Choi, HoSeon;Noh, MyungHyun;Choi, KangRyong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • We calculate moment magnitudes of earthquakes occurred in the southern part of the Korean Peninsula from January, 2001 to February, 2004 and compare them with local magnitudes published by KMA(Korea Meteorological Administration) and KIGAM(Korea Institute of Geoscience and Mineral Resources). From this study, we find that local magnitudes of KIGAM have higher correlation with moment magnitudes than local magnitudes of KMA have. We induce a proper conversion formula by analyzing relation between published local magnitudes and calculated moment magnitudes. The induced formula can be used to unify kinds of magnitudes in earthquake catalogues and unified earthquake catalogues can be applied as necessary factors for analyzing earthquake characteristics, seismic hazards or attenuation formulas in the southern part of the Korean Peninsula.

  • PDF

Changes of Ionospheric Total Electron Content Caused by Large-scale Earthquakes and Recent Earthquakes Occurred Around the Korean Peninsula (국외 대규모 지진과 최근 발생한 국내지진에 의한 이온층 총 전자수 변화)

  • Kim, Byeong-Hoon;Seo, Ki-Weon
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.228-235
    • /
    • 2016
  • We investigated pre- and post- seismic total electron content (TEC) anomalies in ionosphere caused by recent large-scale earthquakes around the globe and additionally examined whether the similar phenomena are detected in connection with the earthquakes around the Korean Penisula. TEC anomalies associated with the large-scale earthquakes showed the similar results to previous studies. In addition, we newly found the similar TEC changes from the recent 2016 Ecuador earthquake (M7.8). However, the post-seismic TEC changes would be falsely interpreted as the pre-seismic TEC changes dependent on the post-processing of TEC observation. We also investigated the possibility of TEC responses from the recent domestic earthquakes including 2016 Gyeongju earthquake but could not find any anomalous TEC changes. This is probably because the domestic earthquakes release significantly smaller acoustic wave energy than that of large-scale earthquakes occurring in plate boundaries.

Construction of Tsunami Inundation Map for Real-Time Quantitative Response (실시간 정량 대응을 위한 지진해일 침수예상도 작성)

  • Bae, Jae-Seok;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.287-294
    • /
    • 2010
  • In this study, a method to construct tsunami inundation map corresponding to the earthquake location and magnitude was proposed for tsunami real-time quantitative response. This proposed procedure can be introduced as in the followings: Potential tsunami source locations expected to cause damage in an interested area was identified. And numerical simulations were performed for various earthquake magnitudes. Based on numerical simulation results, inundation maps were constructed according to each source location and magnitude of tsunami generating earthquake. In this study, inundation maps for Imwon harbor were constructed for the 11 source locations and 7 earthquake magnitudes on a trial basis.

Seismic Risk Map of Korea Obtained by Using South and North Korea Earthquake Catalogues (남.북한 지진 목록을 이용한 한국지진위험도)

  • 김소구;이승규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.13-34
    • /
    • 2000
  • 본 연구에서는 서기 2년부터 1977년까지 남.북한 역사지진(A.D 2-1904)과 초기 계기 지진(1905-1977) 목록을 이용하여 남한 지진 규모로 재조정된 지진목록을 작성하였다 역사 지진은 과거의 협소한 인구분포로 인해 지진 기록의 누락이 많앗다 지진 위험도를 작성하기 위해 지진 발생분포와 지체구조의 특성을 고려하여 4개의 지진구(seismic province)를 설정하였다. 각 지진구에서 최대 잠재 지진결정은 Gumbel의 최대치 이론을 이용하였다 제 1수정 점근 함수 분포에서 유한 상한 값(finte upper boundary) 의 존재는 각 지진구에서 발생할 최대 잠재 지진의 진원(source)이 유한하다는 사실과 잘 일치한다. 따라서 이를 근거로 각 지진구에서 10년 , 20년, 30년, 50년 이내에 2% 5% 10% 초과 확률을 갖는 최대 규모지진을 추정하였다 또한 각 지진구에서 유한 지진원은 과거에 발생했던 큰 규모의 특정 지진과 지진 지체구조 정보에 근거하여 결정하였다. 연구결과 조선시대(1392-1904) 의 지진위험도에서는 경주 울산지역과 서울과 평양지역을 따라 높은지반 가속도 값을 보이며 경주지역에서 0.24g의 최대 지반 가속도 값으로 나타났다 계기 지진목록(1905-1998)을 이용한 한반도의 지진 위험도에서는 경주, 울산, 대구 지역에서 0.10-0.12g 의 최대 지반가속도 값을 보였다. 그리고 계기 지진 목록(1905-1998) 만을 이용하여 작성한 서울.경기 지역의 지진 위험도에서는 김포, 잠실 , 성남 지역의 한강을 따라 분포하는 충적층과 강남지역의 지반 운동이 한강 이북의 대보 화강암 지역에 비해 비교적 높은 0.09-0.10g의 지반 가속도를 보이는 것이 특징이다.

  • PDF

Analysis on the Relationship between Intensity and Magnitude for Historical Earthquakes in the Korean Peninsula (한반도의 역사지진 평가를 위한 진도-규모 관계 분석)

  • Kim, Hyeon-hwa;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.643-648
    • /
    • 2015
  • Equations that could estimate the local magnitude of historical earthquakes, being difficult to calculate, in Sino-Korea craton was obtained using instrumental earthquake data for 22 Korean and 46 northeastern Chinese events. The obtained equations from intensity $I_0$ is $M_L=1.7+0.57{\times}I_0$. The equation from felt area FA for the Korean Peninsula is $M_L=4.29-1.34{\times}log(FA)+0.28{\times}log^2(FA)$. When the information on earthquake damage, effects, and felt area is all recorded at the same time, the former equation of intensity is more feasible than that of felt area due to uncertainty in earthquake felt area.

전력시설물의 내진설계

  • 이선형
    • Electric Engineers Magazine
    • /
    • v.186 no.2
    • /
    • pp.58-66
    • /
    • 1998
  • 우리나라도 지진에 대한 안전지역이라고 할 수 없다. 최근 2~3년 사이에 지진의 빈도가 급격히 늘어나고 있으며 과거지진 기록을 토대로 조사한 바에 의하면 규모 7.0이상의 지진이 발생한 경우도 있다. 최근 50년 동안에도 지리산 지진, 속리산 지진, 평양 앞바다의 황해 지진, 1978년 10월 7일에 발생한 홍성 지진의 경우 규모 5.0이상의 강도가 큰 지진이었고 최근에 들어와 국내 지진 횟수가 크게 늘어나고 또한 야외 같은 지진이 향후 대도시와 주요시설이 밀집된 지역에서 발생될 경우 우리나라와 같이 내진대책이 특별이 없는 경우는 그 피해가 막대할 것이다.

  • PDF