• Title/Summary/Keyword: 지진의 등가정적해석

Search Result 59, Processing Time 0.024 seconds

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

A Study on the Seismic Response Formula for Improvement of Seismic Design Code of Water Treatment Underground Structures (수처리 지중구조물의 내진설계 기준 개선을 위한 지진 응답 제안식의 관한 연구)

  • Lee, Joung-Bae;Bae, Sang-Soo;Chung, Kwang-Mo;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Generally it was known that member forces in the earthquake resistant design is lower than those in the general design. But it is not true in cases of water treatment underground structures, which is different in each case like water treatment plant, sedimentation basin, and utility-pipe conduit. Also, looking at the scale of earthquakes that have recently occurred in Korea, large-scale earthquakes are frequent, so when the magnitude of the design seismic force increases, it is necessary to investigate the seismic behavior of the water treatment underground structure and to deal with it. In this study the change rate of member forces was investigated by the change of design load factor (earthquake acceleration design criteria), earth depth, underground water level. The pseudo-static analysis and response displacement method was applied, and various analyzes were conducted depending on the ground water and soil depth. The proposed formula in this study will be efficient when the earthquake design code of water treatment underground structures is revised.

A Parametric Study of Flexural Stiffness Ratio on Floor Slabs for Seismic Design of Shear Wall Structures (전단벽식 구조물의 내진설계 시 합리적인 바닥판의 휨강성비 적용에 대한 연구)

  • Oh, Soon-Taek;Lee, Dong-Jun;Em, Young-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.148-155
    • /
    • 2009
  • A remarkable discrepancy of lateral deformation of shear wall structures for seismic loads due to a rigid diaphragm assumption without floor slab modelling asks a study how much effective the slab stiffness ratio is to the lateral behaviour. Typical shear wall type 15 stories structure is selected to analysis using MIDAS-ADS2008 commercial softwares modelling three types; 1) rigid diaphragm (RD model) 2) considered out-of plane slab flexural stiffness (DB model), and 3) considered in and out of plane slab flexural stiffness (SRC model). Based on National Code of KBC2005, the Equivalent Static and Response Spectrum seismic analysis are undertaken to compare each responses of the three models. The differences of lateral responses due to the three slab stiffness ratios applied on the models are compared and discussed.

Design of Viscoelastic Dampers to Meet Performance Objectives (성능목표를 달성하기 위한 점탄성 감쇠기의 설계)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.329-339
    • /
    • 2002
  • This research presents a systematic design procedure for supplemental viscoelastic dampers required to satisfy the given performance objectives using capacity spectrum method. To obtain required damper size, the amount of supplemental damping was computed from effective damping minus equivalent damping and inherent damping of structure. In the case of viscoelastic damper, iterative procedure is required because of the inherent stiffness of the damper. To verify the design method proposed in this study, parametric studies were performed for single degree of freedom systems with design variables. The method was also applied to a 10-story steel framed structure and the earthquake responses were obtained. According to time history analysis result the controlled displacements turned out to be close to the target displacement regardless of the design parameters.

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Seismic Performance of Concrete Masonry Unit (CMU) Infills in Reinforced Concrete Moment Framing System (철근콘크리트 모멘트 골조시스템에서 조적 끼움벽의 내진성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The masonry infill walls are one of the most popular components that are used for dividing and arranging spaces in building construction. In spite of the fact that the masonry infills have many advantages, the system needs to be used with caution when the earthquake load is to be considered. The infills tend to develop diagonal compression struts during earthquake and increase the demand in surrounding RC frames. If there are openings in the infill walls, the loading path gets even complicated and the engineering judgements are required for designing the system. In this study, a masonry infill system was investigated through finite element analysis (FEA) and the results were compared with the current design standard, ASCE 41. It is noted that the equivalent width of the compression strut estimated by ASCE 41 could be 32% less than that using detailed FEA. The global load resisting capacity was also estimated by 28% less when ASCE 41 was used compare to the FEA case. Rather than using expensive FEA, the adapting ASCE 41 for the analysis and design of the masonry infills with openings would provide a good estimation by about 25% conservatively.

Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance (철근콘크리트 보의 내진 설계 상세가 폭발 저항 성능에 미치는 영향)

  • Kim, Kuk-Jae;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2017
  • Recently, awareness of the public about the explosion damage has increased due to the increased risk of terrorism. The criteria for blast-resistance design is not sufficient in Korea, it is necessary to develop blast-resistance design for the stability and safety of building by static analysis of current blast-resistance design. In addition, as the increase of earthquake occurrence necessitates the seismic design, it is studied to judge the blast-resistance performance of members applying seismic design without blast-resistance design. Currently, the general analysis of blast load is to refer to UFC 3-340-02 manual. Blast-resistance performance was studied by applying characteristics of blast load through UFC 3-340-02 manual, beam converted into equivalent SDOF System. It is proved that blast-resistance performance is improved when seismic detail is applied considering the maximum deflection of normal, intermediate, and special moment frames.

Seismic Amplification Characteristics of Eastern Siberia (동시베리아 지역의 지진 증폭 특성)

  • Park, Du-Hee;Kwak, Hyung-Joo;Kang, Jae-Mo;Lee, Yong-Gook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.67-80
    • /
    • 2014
  • The thickness of permafrost in Eastern Siberia is from 200 to 500 meters. The seasonally frozen layer can vary from 0 to 4m depending on ground temperature and its location. The shear wave velocity varies from 80m/s in summer to 1500m/s in winter depending on soil type. When melted, large impedence will occur due to the difference between the shear wave velocity of seasonally frozen soil and that of permafrost layer. Large displacement may occur at the boundary of the melted and the frozen layer, and this phenomenon should be considered in a seismic design. In this research, one-dimensional equivalent linear analyses were performed to investigate the effects of the seasonally frozen layer on ground amplification characteristics. Soil profiles of Yakutsk and Chara in Eastern Siberia were selected from geotechnical reports. 20 recorded ground motions were used to evaluate the effect of input motions. As the thickness of seasonally frozen layer and the difference in the shear wave velocity increases, the amplification is shown to increase. Peat, very soft organic soil widely distributed throughout Eastern Siberia, is shown to cause significant ground motion amplification. It is therefore recommended to account for its influence on propagated motion.