• Title/Summary/Keyword: 지진응답 비선형

Search Result 253, Processing Time 0.022 seconds

Dynamic behavior of the bridge with seismic isolation bearing (내진 분리 베어링이 설치된 교량의 동적 거동)

  • 전귀현
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the bridge with the seismic isolation bearing. Also the numerical analyses are performed for investigating the response characteristics of the bridge isolated with the lead-rubber bearing under the ground motions compatible to Korea bridge design response spectra. It is found that the pier design force can be considerably smaller than the one for the bridge with the fixed bearing. It is observed that the lead-rubber bearing has the great effectiveness for reducing the longitudinal seismic force in case of the bridges with low and medium periods. Therefore the seismic isolation bearing can be used instead of the fixed bearing for the economic and safe design of the bridge.

  • PDF

R. C. 건축물의 지진해석에서의 원칙과 특성

  • 이한선
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.27-37
    • /
    • 1998
  • 본 고에서는 지진해석과 관련하여 가장 중요한 원칙과 해석법에 대한 개략을 제시하여 철근콘크리트 구조물의 지진해석과 관련된 용어 및 특수과제를 언급하고자 한다. 이 해석의 위력이나 매력적인 점에도 불구하고 지진응답에 대한 해석은 항상 많은 불확실성에 부닥칠 수 있다는 것을 강조하고자 한다. 해석은 설계과정의 한 단계에 불과하여 수많은 컴퓨터 출력 페이지가 빈틈없는(sound) 기술적 판단을 대신하여서는 안된다. 구조물에 있어서의 지진력은 외부에서 가해진 하중으로부터 발생하는 것이 아니다. 구조물에 압력 및 흡입력으로 작용하는 풍하중과는 달리, 구조물의 기저(base)에서의 주기적 운동에 의한 응답으로서 상부구조물은 가속도를 받게 되고 따라서 관성력으로서 지진력이 얻어지게 된다. 지진응답은 기본적으로 동적인 성질을 가지며 고유주기와 감쇠와 같은 동적 특성은 이 응답을 결정하는데 결정적인 역할을 한다. 만약 지진해석이 실제적인 것이 되자면, 단순화된 방식으로라도 이러한 동적 특성을 고려할 수 있는 것이어야 한다. 이러한 동적 성질이 복잡성의 한 요인이며, 다른 요인으로서 해석적 장애가 존재한다. 대부분의 구조물은 최대지진에 대하여 상당한 항복현상을 나타냄으로써 저항하도록 설계하고 있다. 따라서 설계자는 최대지진에 대한 구조물의 비선형 동적 거동에 대하여 어느 정도 이해를 하고 있어야 한다. 원칙적으로 이것은 매우 복잡하고 어려운 해석적 문제를 제기하게 된다. 실제로는 매우 단순화된 해석법, 적절한 설계 및 상세의 조합만으로도 만족스러운 거동을 얻는 것에 부족함이 없다. 어쨌든 이러한 해석기법의 바탕과 한계를 이해하는 것은 필수적이다.tidyl ethanolamine$(20.9{\sim}29.7%)$, phosphatidyl inositol$(18.4{\sim}26.1%)$ 순으로 많았다. 각 구성지질의 지방산조성은 4종의 버섯 공히 linoleic acid와 palmitic acid가 주요 지방산이었으나 싸리버섯은 중성지질에서 oleic acid의 함량이 높았다.n the part of special landscape management area, it is necessary to introduce landscape impact assessment system to more effective landscape management.ch served as supporting organizations. The control of the construction and management of the royal garden and landscape was held by decision makers, executors of works and management. 2) The general process of the construction and management of the royal garden and landscape included Sangji and Kyuho다 as the first step; In case of buildings and facilities, according to former examples and drawings, the most of the planning and design was already fixed.

  • PDF

The optimum damping retrofit for cabinet structures of NPP by μ-GA (μ-GA를 이용한 원전 캐비닛구조물의 최적감쇠보강)

  • Lee, Gye-Hee;Ha, Dong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.1-7
    • /
    • 2005
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contain seismic category 1 relays was studied in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed at the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by ${\mu}$-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained inform of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The objective function of the optimum procedure was constructed based on the maximum ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness for adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the values of damping exponents are low.

Seismic Damage Analysis for Element-Level and System-Level of Steel Structures (강구조물의 구조요소 및 구조계에 대한 지진손상도 해석)

  • 송종걸;윤정방;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.95-111
    • /
    • 1998
  • In this study, the concepts and procedures of the seismic damage analysis methods are examined for both the element-level and the system-level. The seismic damage analysis at the element-level is performed for several example structures using existing method for structural elements or single-degree-of-freedom (SDOF) systems such as the Park and Ang method. In order to analyze seismic damage at the system-level, two types of procedures are used. In the first type of procedure, the system-level seismic responses can be estimated by using the system representative response method(SRRM), or the equivalent SDOF system response method (ESDOF-SRM). Then, the system-level seismic damage is analyzed from the system-level seismic responses using existing method for structural elements or SDOF systems. IN the second type of procedure, the system-level seismic damages are analyzed using the element damage combination method (EDCM) combing the element-level damage indices determined by existing method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

Response Characteristics of Two Block System under Seismic Base Excitation (이중 블록 계통의 비선형 지진응답 특성)

  • Shin, Tae-myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1288-1293
    • /
    • 2009
  • This paper discusses about modeling method to simulate a nonlinear behavior like sliding or rocking of two stacked body system under earthquake condition. A double body system design can be an option to reduce seismic response of a component in comparison to a single body system for free standing structures. Therefore, according to the priority of components, the structure is to be designed by proper ratio of partition in their height for improvement of seismic capability and structural integrity. Nonlinear modeling and analysis using simple rigid body and dynamic system has been performed to check the trend in such cases. As a result, one of the two bodies can be chosen to reduce the seismic response from energy absorption of the other one by appropriate application of friction ratios not only in slip-slip condition but in slip-rock condition.

Verification of Nonlinear Numerical Analysis for Seismic Response of Single Degree of Freedom Structure with Shallow Foundation (비선형 수치해석을 통한 단자유도 얕은기초 구조물의 지진 응답특성 검증)

  • Choo, Yun-Wook;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.29-40
    • /
    • 2013
  • Seismic response of single degree of freedom system supported by shallow foundation was analyzed by using nonlinear explicit finite difference element code. Numerical analysis results were verified with dynamic centrifuge test results of the same soil profile and structural dimensions with the numerical analysis model at a centrifugal acceleration of 20 g. Differences between the analysis and the test results induced by the boundary conditions of control points can be reduced by adding additional local damping to the natural born cyclic hysteretic damping of the soil strata. The analysis results show good agreement with the test results in terms of both time histories and response spectra. Thus, it can be concluded that the nonlinear explicit finite difference element code will be a useful technique for estimating seismic residual displacement, earthpressure etc. which are difficult to measure during laboratory tests and real earthquake.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

Nonlinear Seismic Analysis Method of Reinforced Concrete Buildings Including Their Pile Foundations (말뚝기초를 포함한 철근콘크리트 건물의 비선형 지진해석법에 관한 연구)

  • 이강석;이원호;류해상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.9-20
    • /
    • 2003
  • At present, the information on the foundation-structure interaction is lacking. As a result, the seismic performance evaluation of buildings seldom considers the effect of the foundation performance on the building responses. Recent earthquakes such as the 1993 Hokkaido Nansei-oki Earthquake(M=7.8), the 1994 Northridge Earthquake(M=6.7), the 1995 Hyogoken-Nambu Earthquake(M=7.2), and the 1999 Chi-Chi Earthquake (M=7.6) have shown that building damages are significantly affected by the degree of damage sustained by the building foundation and the interaction between the building and the foundation. This paper presents a nonlinear seismic analysis method for the seismic performance evaluation of reinforced concrete buildings which considers the pile foundation-structure interaction. The proposed method is applied to an actual building which was damaged during the 1993 Hokkaido Nansei-oki Earthquake. The result reveal that the method is able to predict the performance of the building.

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures (복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

Design of Friction Dampers installed at a Multi-Story Building under Seismic Load (지진하중을 받는 다층 건물에 설치된 마찰감쇠기 설계)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.457-462
    • /
    • 2011
  • In this study, a simplified design procedure for friction dampers of a multi-story structure in order to reduce seismic response is proposed. To get insight for control effect of the structure with friction dampers is difficult, because of a nonlinear characteristic by a friction damper. Since a control force of a friction damper is influenced by coupling velocity between floors, adjoining modes are coupled. Thus structural response are derived by assuming steady-state response in resonance. As it is impossible that an exact solution is obtained for seismic load, first, a closed form solution can be achieved under harmonic vibration. Second, to convert a three-story building into a single-degree-of-freedom(SDOF) structure, modal analysis is performed. Third, an equivalent damping ratio is derived with utilizing closed form solution. And response reducing factor is proposed by it. Finally, friction force of a damper is designed for using response reducing factor, and then designed dampers are verified for seven seismic data. The nonlinear analysis results confirm the validity of the proposed procedure.