• Title/Summary/Keyword: 지지기반벡터

Search Result 62, Processing Time 0.018 seconds

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.