• Title/Summary/Keyword: 지지기반벡터

Search Result 62, Processing Time 0.037 seconds

Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules (분류 우선순위 적용과 후보정 규칙을 이용한 효과적인 한국어 화행 분류)

  • Song, Namhoon;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user's utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.

Machine Learning Based Blog Text Opinion Classification System Using Opinion Word Centered-Dependency Tree Pattern Features (의견어중심의 의존트리패턴자질을 이용한 기계학습기반 한국어 블로그 문서 의견분류시스템)

  • Kwak, Dong-Min;Lee, Seung-Wook
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.337-338
    • /
    • 2009
  • 블로그문서의 의견극성분류 연구는 주로 기계학습기법에 기반한 방법이었고, 이때 주로 활용된 자질은 명사, 동사 등의 품사정보와 의견어 어휘정보였다. 하지만 하나의 의견어 어휘만을 고려한다면 그 극성을 판별하는데 필요한 정보가 충분하지 않아 부정확한 결과를 도출하는 경우가 발생할 수 있다. 본 논문에서는 여러 어휘를 동시에 고려하였을 때 보다 정확한 의견분류를 수행할 수 있을 것이라는 가정을 세웠다. 본 논문에서는 효과적인 의견어휘자질의 추출을 위하여 의견이 내포될 가능성이 높은 의견어휘를 기반으로 의존구문분석을 통해 의존트리패턴을 추출하였고, 제안하는 PF-IDF가중치를 적용하여 지지벡터기계(SVM)와 다항시행접근 단순베이지안(MNNB)알고리즘으로 비교 실험을 수행하였다. 기준시스템인 TF-IDF가중치 기법에 비해 정확도(accuracy)가 지지벡터기계에서 5%, 다항시행접근 단순베이지안에서 8.9% 향상된 성능을 보였다.

Dual SMS SPAM Filtering: A Graph-based Feature Weighting Method (듀얼 SMS 스팸 필터링: 그래프 기반 자질 가중치 기법)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.95-99
    • /
    • 2014
  • 본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.

  • PDF

(A Question Type Classifier based on a Support Vector Machine for a Korean Question-Answering System) (한국어 질의응답시스템을 위한 지지 벡터기계 기반의 질의유형분류기)

  • 김학수;안영훈;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.466-475
    • /
    • 2003
  • To build an efficient Question-Answering (QA) system, a question type classifier is needed. It can classify user's queries into predefined categories regardless of the surface form of a question. In this paper, we propose a question type classifier using a Support Vector Machine (SVM). The question type classifier first extracts features like lexical forms, part of speech and semantic markers from a user's question. The system uses $X^2$ statistic to select important features. Selected features are represented as a vector. Finally, a SVM categorizes questions into predefined categories according to the extracted features. In the experiment, the proposed system accomplished 86.4% accuracy The system precisely classifies question type without using any rules like lexico-syntactic patterns. Therefore, the system is robust and easily portable to other domains.

Grammatical Relation Analysis using Support Vector Machine in BioText (바이오 문서에서 지지 벡터 기계를 이용한 문법관계 분석)

  • Park, Kyung-Mi;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.287-292
    • /
    • 2003
  • 동사와 기본구 사이의 문법관계 분석은 품사부착과 기본구 인식이 수행된 상태에서, 동사와 의존관계를 갖는 기본구를 찾고 각 구의 구문적, 의미적 역할을 나타내는 기능태그를 인식하는 작업이다. 본 논문에서는 바이오 문서에서 단백질과 단백질, 유전자와 유전자 사이의 상호작용관계를 자동으로 추출하기 위해서 제안한 문법관계 분석 방법을 적용하고 따라서 동사와 명사고, 전치사고, 종속 접속사의 관계만을 분석하며 기능태그도 정보추출에 유용한 주어, 목적어를 나타내는 태그들로 제한하였다. 기능태그 부착과 의존관계 분석을 통합해 수행하였으며, 지도학습 방법 중 분류문제에서 좋은 성능을 보이는 지지 벡터 기계를 분류기로 사용하였고, 메모리 기반 학습을 사용하여 자질을 추출하였으며, 자료부족문제를 완화하기 위해서 저빈도 단어는 품사 타입 또는 워드넷의 최상위 클래스의 개념을 이용해서 대체하였다. 시험 결과지지 벡터 기계를 이용한 문법관계 분석은 실제 적용시 빠른 수행시간과 적은 메모리 사용으로 상호작용관계 추출에서 효율적으로 사용될 수 있음을 보였다.

  • PDF

Visual Object Tracking Using Superpixel-Based Graph Cuts (슈퍼픽셀 기반의 그래프 컷을 이용한 객체 추적)

  • Lee, Dae-Youn;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.64-65
    • /
    • 2013
  • 본 논문에서는 슈퍼픽셀(superpixel) 단위의 그래프 컷 알고리즘을 적용하여 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 먼저 영상 분할 기법을 사용하여 입력 영상을 슈퍼픽셀로 분할하고 각 슈퍼픽셀에서 색상 히스토그램을 이용한 특성 벡터를 생성한다. 그리고 특성 벡터에 지지벡터기계(support vector machines)를 사용하여 각 슈퍼픽셀의 객체 확률 값을 추정한다. 객체 확률 값을 데이터 항(data term)으로, 이웃한 슈퍼픽셀 간의 특성 벡터 차 값을 스무드 항(smooth term)으로 하여, 그래프 컷(graph cuts) 알고리즘으로 슈퍼픽셀들을 객체와 배경으로 분류하고 객체 슈퍼픽셀을 최대한으로 포함하는 객체 윈도우를 찾는다. 실험 결과는 제안하는 기법이 기존 기법들보다 객체 추적 성능이 우수함을 보여준다.

  • PDF

A Syllable Kernel based Sentiment Classification for Movie Reviews (음절 커널 기반 영화평 감성 분류)

  • Kim, Sang-Do;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo;Kim, Kweon-Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, we present an automatic sentiment classification method for on-line movie reviews that do not contain explicit sentiment rating scores. For the sentiment polarity classification, positive or negative, we use a Support Vector Machine classifier based on syllable kernel that is an extended model of string kernel. We give some experimental results which show that proposed syllable kernel model can be effectively used in sentiment classification tasks for on-line movie reviews that usually contain a lot of grammatical errors such as spacing or spelling errors.

Personalized Expert-Based Recommendation (개인화된 전문가 그룹을 활용한 추천 시스템)

  • Chung, Yeounoh;Lee, Sungwoo;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Taking experts' knowledge to recommend items has shown some promising results in recommender system research. In order to improve the performance of the existing recommendation algorithms, previous researches on expert-based recommender systems have exploited the knowledge of a common expert group for all users. In this paper, we study a problem of identifying personalized experts within a user group, assuming each user needs different kinds and levels of expert help. To demonstrate this idea, we present a framework for using Support Vector Machine (SVM) to find varying expert groups for users; it is shown in an experiment that the proposed SVM approach can identify personalized experts, and that the person-alized expert-based collaborative filtering (CF) can yield better results than k-Nearest Neighbor (kNN) algorithm.

Comparison of data mining methods with daily lens data (데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교)

  • Seok, Kyungha;Lee, Taewoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1341-1348
    • /
    • 2013
  • To solve the classification problems, various data mining techniques have been applied to database marketing, credit scoring and market forecasting. In this paper, we compare various techniques such as bagging, boosting, LASSO, random forest and support vector machine with the daily lens transaction data. The classical techniques-decision tree, logistic regression-are used too. The experiment shows that the random forest has a little smaller misclassification rate and standard error than those of other methods. The performance of the SVM is good in the sense of misclassfication rate and bad in the sense of standard error. Taking the model interpretation and computing time into consideration, we conclude that the LASSO gives the best result.

A Study on Negation Handling and Term Weighting Schemes and Their Effects on Mood-based Text Classification (감정 기반 블로그 문서 분류를 위한 부정어 처리 및 단어 가중치 적용 기법의 효과에 대한 연구)

  • Jung, Yu-Chul;Choi, Yoon-Jung;Myaeng, Sung-Hyon
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.477-497
    • /
    • 2008
  • Mood classification of blog text is an interesting problem, with a potential for a variety of services involving the Web. This paper introduces an approach to mood classification enhancements through the normalized negation n-grams which contain mood clues and corpus-specific term weighting(CSTW). We've done experiments on blog texts with two different classification methods: Enhanced Mood Flow Analysis(EMFA) and Support Vector Machine based Mood Classification(SVMMC). It proves that the normalized negation n-gram method is quite effective in dealing with negations and gave gradual improvements in mood classification with EMF A. From the selection of CSTW, we noticed that the appropriate weighting scheme is important for supporting adequate levels of mood classification performance because it outperforms the result of TF*IDF and TF.

  • PDF