• Title/Summary/Keyword: 지중 구조물

검색결과 182건 처리시간 0.026초

Evaluation of increase in water supply capacity by expanding the size of the sand storage pond (지중저류조 규모 확대에 따른 물공급 능력 증대 효과 분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.271-271
    • /
    • 2021
  • 샌드댐은 하천 또는 계곡에 보를 설치하여 저류공간을 확보하고 여기에 공극이 큰 모래를 인위적으로 채우거나 상류에서 공급된 토사로 자연적으로 채워지게 한 취수구조물로서 아프리카 등 건조지역에서 물공급 시설로 활용되고 있다. 국내에서는 아직까지 이와 같은 샌드댐 축조 사례는 없지만, 토사유출저감을 위해 설치한 사방댐을 개조하여 취수원으로도 활용하거나 산간 계곡 인근 지중에 차수벽을 설치하여 모래저류조 형태의 물공급 시설을 운영하고 있는 곳이 일부 존재한다. 본 연구에서는 춘천시 북산면 물로리에 실제로 위치한 지중저류조를 대상으로 물수요량을 만족시키는 지를 지하수 유동모델링을 통해 평가하였고, 증가하는 물수요와 가뭄시 물공급 능력 증대를 위한 저류조의 규모 확대 등 구조적 개선 방안을 제시하였다.

  • PDF

Effect of New Tunnelling on the Behaviour of Grouped Pile and Adjacent Tunnel (신설 터널굴착이 지중 군말뚝 및 인접 터널의 거동에 미치는 영향 연구)

  • Kim, Su Bin;Oh, Dong-Wook;Cho, Hyeon Jun;Lee, Yong-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제42권4호
    • /
    • pp.509-517
    • /
    • 2022
  • The demand for underground infrastructures such as tunnels is expanding due to rapid urbanization. Tunnels in urban areas are usually constructed adjacent to structures supported by piles. Therefore, a proper understanding of pile-tunnel interaction due to tunnel excavation activities is vital. Thus, in this study, a numerical analysis is conducted to analyze pile settlements, ground surface settlements and shear deformations above an existing tunnel subject to the presence of an adjacent tunnelling, with vertical offsets, the number of piles and the pile spacing considered as variables in the analysis. The results show that the vertical offsets between the tunnel crown and the pile tip generatelarger settlement than the pile spacing. In addition, the vertical offset shows an inversely proportional relationship to the shear deformation due to new tunnelling.

Analysis of Ground Penetration Radar Technology Trend (지중탐지 레이더 기술동향 분석)

  • Kim, D.K.
    • Electronics and Telecommunications Trends
    • /
    • 제30권5호
    • /
    • pp.22-27
    • /
    • 2015
  • 도로함몰 사고 증가를 계기로 지하 구조물의 안전 관리 방법, 특히 비파괴 검사 장비에 대한 관심이 고조되고 있다. 지중투과 레이더 기술은 전자파의 투과, 반사 특성을 이용한 비파괴 검사 기술로써 투과 깊이, 투과 해상도 등 비파괴 검사 성능 측면에서 가장 주목받고 있는 기술이다. 본고에서는 지중투과 레이더 기술의 특징, 국외 제품 동향을 살펴본다.

  • PDF

Dynamic Soil Stiffness in the Longitudinal Direction of Underground Structures (지중구조물의 축방향 동지반강성계수)

  • 김대상
    • Journal of the Korean Geotechnical Society
    • /
    • 제16권5호
    • /
    • pp.149-155
    • /
    • 2000
  • 응답변위법에서 이용되는 동지반강성계수의 적절한 평가법에 대한 제안을 하였다. 현재까지의 지진피해조사 및 장기간의 지진관측사례는 지반이 공진할 때의 변형모드가 지중구조물의 피해에 가장 직접적으로 관련이 있는 것으로 알려져 있다. 따라서, 지중구조물의 축방향의 지반의 변형모드와 그 타월 진동수를 특정하여 동지반강성계수를 평가했다. 동지반강성계수는 지반의 공진상태를 상정하고 있기 때문에 결과로써 지진파의 축방행 파장의 영향을 받지 않고, 관상구주물의 반경과 표층두께의 비, 표층두께에 대한 구조물의 매설위치, 표층지반과 기반의 임피단스비 라고 하는 3개의 무차원 변수에 의해 표현된다.

  • PDF

Study on the Effect of Near Blasting to Earth Retaining Wall by Measuring Underground Vibrations (지중진동 측정을 통한 흙막이 근접발파 영향 연구)

  • Cho, Lae Hun;Jeong, Byung Ho
    • Explosives and Blasting
    • /
    • 제33권4호
    • /
    • pp.14-24
    • /
    • 2015
  • We conducted test blasting in 3 sites to identify the effect on safety of the earth retaining wall by near blasting vibration. As a test result, we confirm that underground structures(earth anchor et al.) are relatively safer than surface structures as the underground vibration is 10~52% of surface vibration at a same distance. We derived surface and underground vibration prediction equations by regression analysis of measured 3 sites' surface and underground vibration PPV. Also we calculated minimum separation distance by blasting pattern about underground and surface curing concrete. Unless any discontinuity which are unsafe on the earth retaining wall appear, blasting work using under 2.4kg per delay is not meaningful to the earth retaining wall's safety as the result of measuring near blasting vibration, confirming change the earth retaining wall's instrument, and observation of structural deformation.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제26권3호
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • 제20권5호
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.

A Study on the Seismic Response Formula for Improvement of Seismic Design Code of Water Treatment Underground Structures (수처리 지중구조물의 내진설계 기준 개선을 위한 지진 응답 제안식의 관한 연구)

  • Lee, Joung-Bae;Bae, Sang-Soo;Chung, Kwang-Mo;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • 제21권3호
    • /
    • pp.41-48
    • /
    • 2022
  • Generally it was known that member forces in the earthquake resistant design is lower than those in the general design. But it is not true in cases of water treatment underground structures, which is different in each case like water treatment plant, sedimentation basin, and utility-pipe conduit. Also, looking at the scale of earthquakes that have recently occurred in Korea, large-scale earthquakes are frequent, so when the magnitude of the design seismic force increases, it is necessary to investigate the seismic behavior of the water treatment underground structure and to deal with it. In this study the change rate of member forces was investigated by the change of design load factor (earthquake acceleration design criteria), earth depth, underground water level. The pseudo-static analysis and response displacement method was applied, and various analyzes were conducted depending on the ground water and soil depth. The proposed formula in this study will be efficient when the earthquake design code of water treatment underground structures is revised.

Experimental and Analytical Evaluation of the Seismic performance of a Concrete Box Structure Strengthened with Pre-flexed Members (프리플렉스 부재를 이용한 콘크리트 박스 구조물 내진보강에 관한 실험 및 해석적 평가)

  • Ann, Ho-June;Song, Sang-Geun;Min, Dae-Hong;An, Sang-Mi;Kong, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권5호
    • /
    • pp.397-403
    • /
    • 2016
  • During the rapid economic growth in Korea since the 1970s, many underground facilities were constructed such as under passes and railways. Seismic design has been mandated in 1988, but the structures built before 1988 were not reflected on the seismic design. Accordingly, these underground structures require effective seismic reinforcing methods to ensure safety when the earthquake happens. By these reasons, in this study, using the proposed pre-flexed members, RC box structure was analyzed for seismic reinforcement of the corner. This method is based on a principle that enlarging the resistance against the external force by installing the pre-flexed member to the box structure corner. To evaluate validity, a newly developed member with CornerSafe was compared with traditional type reinforcement using experiments and finite element analysis. In finite element mode, nonlinearity of steel was modeled based on J2 plasticity model and concrete was based on CEB FIP MODEL CODE 1990. Also, composite ratios of box and pre-flexed member were computed for design application. The reinforcement and box structure were analyzed under the bond condition completely attached by the tie, and the results of experiment and finite element analysis were same in the force-displacement curve.

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : II. Experimental Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파 병행기법 : II. 실험적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • 제18권4호
    • /
    • pp.271-283
    • /
    • 2002
  • P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects in Impact-Echo(IE) method. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. In numerical studies(Part I), it was verified that P-wave velocities could be obtained from SASW. In this paper(Part II), experimental studies were made in slab type concrete model specimens in which voids and waterproof sheet were included at the known locations. Accordingly, the feasibility of the proposed method was evaluated. The IE-SASW method was also performed in the precast model tunnel on ground and open-cut tunnel in ground. SASW tests were performed to determine the P-wave velocity of the concrete and then IE tests were carried at regularly spaced points along the testing lines to determine the thickness of structures. The nondestructive testing method which combined SASW and IE tests showed the great potential in the field applications.