• Title/Summary/Keyword: 지중가온

Search Result 24, Processing Time 0.027 seconds

Root zone environments in two cropping system within a year for Kyoho grapes (포도 '거봉'의 2기작 재배에서 근권환경 특성)

  • 오성도;김용현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 1997
  • This study was performed to investigate the behaviour of root zone environments under the control of soil temperature and tension of soil moisture near the root Bone of 'Kyoho' grapes tree grown on restricted root zone system in plastic greenhouse. Maximum diurnal air temperature inside plastic greenhouse ranged between 25.1 and 32.7$^{\circ}C$, and the average of nocturnal air temperature inside plastic greenhouse maintained at 18$^{\circ}C$ in winter season. Also the minimum diurnal relative humidity ranged between 50 and 55%, and the maximum nocturnal relative humidity ranged between 84 to 87%. At a depth of 15cm from soil surface, the average soil temperature maintained at 25.6$^{\circ}C$ for under-ground heating, and appeared to 17.4$^{\circ}C$ for unheated condition. Although the tension of soil moisture just after irrigation sharply decreased to pF 1.5, the tension of soil moisture at the depth of 15cm maintained at pF 2.0~2.2. It is suggested that the tension of soil moisture at the depth of 15cm might be used as the standard for the determination of irrigation set point. Effective drainage system is needed to prevent the spindly and succulent growth of vine trees grown in restricted root zone system.

  • PDF

A Development of Automation System and a Way to use Efficiency of Solar Energy System in Greenhouse -Study on temperature variation of soil heating in greenhouse- (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치 개발(1) - 시설재배 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.54-60
    • /
    • 1998
  • 시설재배의 생육은 지상부의 온도에 주로 영향을 받지만, 토양이 저온일 경우에는 양분의 흡수가 불량하고, 토양미생물의 활동이 떨어진다. 특히 세근의 발달이 억제될 뿐만 아니라 코르크화가 촉진되고, 정식후 묘의 활착이 지연되어 토양수분의 흡수가 불량해지므로 생육이 저하된다. (중략)

  • PDF

A Development of Automation system and a way to use Solar Energy System Eefficiently in Greenhouse -Study on Growth and Yield of a cucumber in soil heating- (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.61-67
    • /
    • 1998
  • 1973년과 1978년의 1,2차 Oil Shock로 인하여 정부는 대체에너지 개발을 입법화하여 태양열의 이용을 촉진시켜왔다. 그 후 약 20년간 태양열 이용에 대한 효과적인 집열과 축열기술의 개발에 연구가 추진되었으며, 집열판(Flat-plate collector)의 개발과 열교환기, 축열장치의 설계 등 효율향상을 통하여 건축의 난방, 온수급탕 등이 주종을 이루었다. (중략)

  • PDF

Influence of Soil Temperature on Growth of Grapevines (지온이 포도의 생육에 미치는 영향)

  • 김진한
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.237-240
    • /
    • 1999
  • 지온은 기온에 따라 변화 하지만, 시설원예에 있어서는 지중 가온에 의하여 어느 정도 기온과 분리하여 제어할 수가 있고, 또는 실제로 제어한 예도 많다. 지온이 작물의 생육이나 과실의 비대에 미치는 경향에 대하여는 Cooper의 총설에서 보는 바와 같이 다수의 보고가 있고, 또한 지온이 인산흡수에 미치는 영향을 조사한 보고도 많다. (중략)

  • PDF

Study on the Temperature Variation of Greenhouse Soil Warming using the Solar Energy(1) - Temperature Variation of Soil Depth by Soil Warming - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(1) - 지중변온가온에 따른 깊이별 온도특성 -)

  • Kim, J.H.;Kim, T.W.;Nah, K.D.;Kim, T.S.;Sung, I.J.;Chung, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • The temperature of root zone is known as an important factor for the growth of crops and reduction of energy in greenhouse. The purpose of this study was to design the solar energy supply system to keep the optimum condition of root zone by soil warming. As a result of this study, soil warming compared with no warming changed on a large scale temperature rise effect by depth of soil. The greenhouse's inner temperature have an effect on the temperature of surface up to 15 cm, rised to about 1 hour after warming. In case of the temperature fluctuation, soil temperature was about $12^{\circ}C$ up to 15${\sim}$25 cm and it was $13.4^{\circ}C$ at greater depths. This results showed that the position of root zone was very different after 3 weeks of growth.

Effect of Rootzone Warming by Hot Water in Winter Season on Rhizosphere Environment in Greenhouse-grown Cucumber(Cucumis sativus L.) (온수순환에 의한 시설오이 근권부 지온 상승)

  • 이재욱;이응호;권지선;권영삼;이우승
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1995.04a
    • /
    • pp.51-52
    • /
    • 1995
  • 혹한기 시설오이 재배시 저지온으로 인해 모의 활착지연, 양수분흡수 불량에 따른 생육부진으로 출하시기가 늦어질 뿐 아니라, 품질 및 초기 수량이 저하되고 있다. 일부농가에서 양열과 전열선을 이용하여 지온을 상승시키고 있으나, 이들 방법은 적정 지온유지 및 실용성에 있어서 여러가지 문제점이 따른다. 따라서 본시험에서는 온수지중가온방법을 도입하여 지온상승을 도모하였다. (중략)

  • PDF

Effect of Root Zone Warming by Hot Water on Fruit Characteristics and Yield of Greenhouse- Grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 과실특성 및 수량에 미치는 영향)

  • 신용습;이우승;연일권;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on fruit yield of oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$ and non-warming from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The blooming of female flower was faster 1 days in 17$^{\circ}C$ plot, 6 days in 21$^{\circ}C$ plot, and 7 days in $25^{\circ}C$ plot than in control plot and the days from blooming to harvesting were shorter 5 days in 17$^{\circ}C$ plot, 11 days in 21$^{\circ}C$ plot, and 12 days in $25^{\circ}C$ plot than in control plot. 2. Mean fruit weight was the highest in 21$^{\circ}C$ plot, followed $25^{\circ}C$, 17$^{\circ}C$ and control plots, respectively, and flesh thickness was the highest in $25^{\circ}C$ plot, followed by 21, 17$^{\circ}C$ and control plots, respectively. 3. Early and middle-phase yield was the highest in $25^{\circ}C$ plot, followed by 21$^{\circ}C$, 17$^{\circ}C$ and control plots but late yield was the highest in 17$^{\circ}C$ plot, followed by control, 21, and $25^{\circ}C$ plots. Total yield per 10a was higher 33% in 17$^{\circ}C$ plot, 49% in 21$^{\circ}C$ plot, and 37a in $25^{\circ}C$ plots than in control plot, harvested 1, 490kg per 10a. 4. Total yield was highest in 21$^{\circ}C$ plot, followed by $25^{\circ}C$, 17$^{\circ}C$, and control plots. Malformed and fermented fruit rates were the highest in control, followed by 17, 25, and 21$^{\circ}C$ plots and marketable fruit rate was 21, 25, 17$^{\circ}C$, and control plot in order.

  • PDF

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (2) - Required Energy per Unit Area for Soil Warming - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(2) - 지중변온가온의 단위면적당 소요에너지 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Nah, Kyu-Dong;Kim, Tae-Soo;Kim, Eun-Tae;Chung, Suk-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • The temperature of root zone was known as an important factor for the growth of crops and reduction of energy in greenhouse. The purpose of this study was to design the apposite inflow of calories per the unit area by comparison of temperature in the warmed and non-warmed soil. The energy needed for soil warming about pipe length showed the change of temperature on inflow and outflow as $2^{\circ}C{\sim}3^{\circ}C$(average $2.5^{\circ}C$). Therefore, the inflow per the unit hour was 3,450, 57,5 kcal/$h{\cdot}m^2$ on soil heating respectively. The non-warmed soil temperature in greenhouse made a difference by depth and it was partially affected inner temperature under 15 cm, but it was not above 15 cm. The soil temperature would be raised over $5^{\circ}C$ than non-warmed soil to increase effect of soil warming. Therefore, the inflow per the unit area that should be provided was about 100 kcal/$h{\cdot}m^2$.

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (3) - Verification Experiment on Commercialization of Cultivation - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(3) - 지중변온가온의 재배실용화 실증시험 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Song, Jae-Kwan;Nah, Kyu-Dong;Ha, Yu-Shin;Kim, Tae-Soo;Kim, Eun-Tae
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • According to the result of the first report and the second report of this study, it was expected that soil heating in a protected cultivation in winter season would affect the initial growth and development of fruit. Based on the result of previous study, we compared height, leaf number, leaf area, fruit weight, crop growth rate (CGR), features and quantity of cucumber for 3 months after planting between the soil heating group and the non-heating group. The result were summarized as follows: The height, leaf number, leaf area and fruit weight of cucumber in the soil heating group were 12.5%, 14.6%, 21.4% and 22.8% higher, respectively, compared to those of cucumber in the non-heating group. Although both the soil heating group and the non-heating group similarly showed an increasing pattern in CGR after transplanting, the soil heating group showed the increased CGR by 12.1% compared to that of the non-heating group. The quantity of cucumber in the soil heating group was about 26% higher than that of the non-heating group. It is assumed that the activation of initial growth and development of fruit in the heating group resulted in the increase of quantity.

The Growth of Cucumber and Variation of Soil Temperature Used by Warming Water Irrigation System (가온관수 시스템에 따른 지온변화와 오이의 생육)

  • 김태욱;김진현
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • A soil temperature was known as extremely important factor in terms of measuring the values of the growth and yield of vegetable in the greenhouse. A low temperature water irrigation was had much trouble in its growth. This study was performed to analyze the effect of the heating water irrigation on the soil temperature and the growth of a cucumber within a greenhouse environment. Soil temperature was 5-7$^{\circ}C$ below to 10cm in depth and 2-3$^{\circ}C$ to 20cm when the irrigation water temperature was 13$^{\circ}C$ (non-warme water irrigation). Soil temperature was similar to irrigation water temperature at 5cm in depth and was 1.5-2$^{\circ}C$ below at 10cm when the irrigation water temperatures were 2$0^{\circ}C$, $25^{\circ}C$. The early growth rates of heating water irrigation were 109-110% in plant height, 107-108% in leaf number, 103% in node number compared with those of unheated water irrigation for 30 days after planting it. The rates of total yield were 115% in 2$0^{\circ}C$ water irrigation plots and 121% in $25^{\circ}C$ water irrigation plots while those of unheated water irrigation plots were.

  • PDF