• Title/Summary/Keyword: 지주실험

Search Result 44, Processing Time 0.021 seconds

An Experimental Study on the Stability of Inclined Earth Retaining (지주식 흙막이의 안정성에 관한 실험적 연구)

  • Seo, Min-Su;Im, Jong-Chul;Jeong, Dong-Uk;Yoo, Jae-Won;Koo, Young-Mo;Kim, Gwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.99-110
    • /
    • 2012
  • Inclined Earth Retaining Structure Method (IER method, briefly) is developed in order to improve the existing earth retaining method. In IER method, there are three main structures, front support, back support, and head binding. Especially, back support acts the role that reduces the earth pressure acting on the front support. In this study, the stability according to the installation angle and stiffness of front or back support is analysed by model tests. By the test results, it is known that inclined back support is very effective to reduce the earth pressure acting on the front support. Especially, the effect of the stiffness and installation angle of back support is analysed.

An Experimental Study on the Inclined Earth Retaining Structure in Clay (점토지반내의 IER 지주식 흙막이의 실험적 고찰)

  • Jeong, Dong-Uk;Im, Jong-Chul;Yoo, Jae-Won;Seo, Min-Su;Koo, Young-Mo;Kim, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.63-75
    • /
    • 2013
  • Inclined Earth Retaining Structure Method (IER Method), was developed in order to improve the mechanical properties of the existing earth retaining method. IER consists of two supports, which are front and back supports. In the IER method, back support is very effective for the reduction of the earth pressure acting on the front support. In this study, the effects of back support and fixing conditions of lower ends of supports are analysed by laboratory model tests in clay. The test results show that back support reduces the Leteral displacement of IER effectively, and according to the results the effect of interval and fixing condition of back support was analysed.

Crashworthiness Study of Sliding Post Using Full Scale Crash Test Data (충돌실험 데이터를 이용한 슬라이딩 지주구조의 감충성능 분석)

  • Jang, Dae-Young;Lee, Sung-Soo;Kim, Kee-Dong;Sung, Jung-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Medium to large post structures installed along the roadside without proper protection can lead to serious vehicle damage and occupant injury at the impact. In North America and Europe, splitting systems such as slip base or breakaway device are used to reduce impacts. But the system has the risk of secondary accident when the splitted post falls down to the traffic or pedestrian. Sliding Post have been proposed as a way to solve this problem. By studying the crash test results of the 1.3ton and 0.9ton vehicle with 60 km/h and 80 km/h to a Rigidly Fixed Post (RFP) and Sliding Post (SP), danger of the conventional RFP and crashworthiness of the SP have been proven. While collision analysis only from the acceleration measured at the center of the vehicle assumes the motion of the post is the same as that of the vehicle, in this paper, by adding high speed film data to the analysis with vehicle acceleration could have separate the post motion from the vehicle motion. It gives better explanations on the movement of post and vehicle in each distinctive time step and provides basics to the crashworthy post design.

Crash Worthiness of a Post with Clip-type Slip Base Subject to Side Impact (클립형 단부분리장치를 갖는 지주의 측면충돌 시 충격완화효과)

  • Ko, Man-Gi;Kim, Kee-Dong;Kim, Kyoung-Ju;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.175-186
    • /
    • 2010
  • When a rigid post is exposed to traffic, it is hazardous not only to head-on impacts but also to side impacts. Clip-type slip base is an effective measure to reduce the severity of head-on impacts and side impacts as well because of its multi-directional release mechanism. Side impact tests were conducted and the results were analysed to demonstrate the hazardousness of a rigid post to a side impact and the crash worthiness of a post having clip-type slip base. For that, side impact test standard was made adapting the NCHRP Report 350, and 820kg-50km/h side impact tests were made for posts of D101.6mm(t=4.2mm) with and without slip base. Additionally, 35km/h side impact to the same post with slip base was conducted to check whether the clip-type slip base release mechanism works properly to the low impact speed. The tests revealed that the rigidly connected post was very hazardous to side impact while the post with the clip-type slip base reduced the impact severity tremendously.

An Experimental Study on the Stability of Assembled Earth Retaining Wall in Sandy Ground (사질토 지반에 설치된 조립식 지주옹벽(AER)의 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Hwang, Sung-Pil;Kim, Chang-Young;Choi, Jung-Hyun;Kim, Hong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.43-52
    • /
    • 2016
  • Assembled Earth Retaining wall (AER-wall is used here) using back pile (back supporting beam is used from here) has been developed at Pusan National University. Both cost and time have been significantly reduced because AER-wall can be fabricated in a shop. Also its stability has been improved with a back supporting beam reducing earth pressure. In this study, the test results were analyzed after laboratory model tests were performed. The lateral displacement of AER-wall significantly decreased with both inclined wall and back supporting beams. As a result, the stability of AER-wall and effect of back supporting beam have been analyzed and verified.

Development of an Energy-Absorbing Device for a Crashworthy Sliding Post (감충성능을 갖는 슬라이딩 지주의 에너지흡수장치 개발)

  • Noh, Min-Hyung;Jang, Dae-Young;Lee, Sung-Soo;Han, Ki-Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.445-454
    • /
    • 2020
  • Non-breakaway crashworthy sliding posts move rigidly with a vehicle in the early stage of vehicle impact. During this stage, a vehicle imparts its linear momentum to the post, experiencing first-stage speed loss followed by second-stage loss from the crush of the energy-absorbing pipe (EAP) installed under the guide rail. An EAP is the key element of a crashworthy sliding post and should be confined to the post foundation. This paper covers the development of an EAP for a sliding post of 507 kg, which is a sliding post type frequently used in Korea for cantilever signs. Detailed explanations of the designs for an EAP structure using LS-DYNA impact simulation are given, and the crashworthiness of the systems are confirmed through crash tests. The EAP presented in this paper can accommodate impacts from 0.9 ton-60 km/h to 1.3 ton-80 km/h, and is applicable to foundations up to 2.7 m in length.

Mechanical Effects of Back Supporting Beam of Assembled Earth Retaining Wall on Field Model Tests Results (현장모형실험을 통한 AER옹벽의 지주보의 역학적 효과)

  • Kim, Hongsun;Im, Jong-Chul;Choi, Junghyun;Seo, Minsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.343-355
    • /
    • 2017
  • In this study, an Assembled Earth Retaining Wall (AER wall) is newly proposed. The AER wall combined stabilizing piles names as Back Supporting Beam is developed to improve stability and economics of existing retaining walls. For the verification of the AER wall, the field model tests and 3D numerical analyses were performed. As a result of the field tests, it can be confirmed that the earth pressure is considerably reduced compared with the L-shaped retaining wall. Also, the 3D numerical analyses show that AER wall is at least 29.85% more effective at lateral displacement than general L-shaped retaining wall. In other words, AER wall is expected to raise economical efficiency because of excellent mechanical stability of Back Supporting Beam.

An Experimental Study on the Stability of IER according to the Head Connection Method (지주식흙막이의 두부 연결 방법에 따른 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.45-57
    • /
    • 2016
  • The Inclined Earth Retaining Structure (IER) is the structure using an integrated system of both front supports and inclined back supports to increase the stability for excavation. The IER is a structurally stable temporary excavation method using the back supports restraining the lateral displacement of the front supports as stabilizing piles. The back supports connected to the front supports significantly reduce the earth pressure acting on both the front wall and the front supports by distributing it to the back supports in order to increase the structural stability. In this study, mechanical behaviors of IER according to the head connection type using fixed- or hinge-connection were found by performing numerical analysis and laboratory model tests in the sandy ground. The maximum lateral displacement of fixed-connection was 88% of that of hinge-connection in the numerical analysis. The lateral displacement of fixed-connection was 7% of that of hinge-connection in the laboratory model test results. Furthermore, the earth pressure of the fixed-connection was 67% of that of the hinge-connection in the shear-strain analysis results of the model ground.

Study on the Hazardousness of a Rigidly Connected Circular Post and Crash Worthiness of a Circular Post with Release Mechanism for Head-on Impacts Using Impact Simulation (시뮬레이션을 통한 강결된 원형지주의 정면충돌에 대한 위험도 및 분리식 지주의 효과 분석)

  • Ko, Man-Gi;Kim, Kee-Dong;Kim, Kyoung-Ju;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.197-202
    • /
    • 2010
  • Post release mechanism is generally used to reduce the severity of the occupant of an errant vehicle impacting a roadside posts. The 820kg-50km/h head-on impact simulations were made using LS-DYNA program for the posts of 101.6mm Dia(t=4.0mm) with and without clip-type release mechanism. The simulation result was compared with impact test result to enhance the credibility of simulation model. The study shows that the high impact severity (THIV, PHD) and excessive deformation threatens the safety of the occupant when a car impacts a rigidly connected posts, while a post with clip-type slip base reduce the impact severity to a safe level.

Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam (튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.313-325
    • /
    • 2001
  • Tubular bridge rail was developed to restrain and redirect a 14ton van-type truck. The developed bridge rail permits better visibility than concrete safety-shape bridge rail, and it has better structural adequacy than the existing steel and aluminum bridge rails in Korea. The new bridge rail consists of a tubular thrie beam(TTB) rail and a steel guard rail, which are connected to composite posts. The TTB shape provides both better containment of diverse bumper heights and more tight fit between the ends of bridge rail and roadside guardrails than the existing bridge rail sections currently used in Korea. Making composite post by filling concrete inside the steel pipe of the same size as are used for the roadside guardrail post was found to be more efficient in increasing the stiffness and ultimate strength than simply increasing the size of the steel pipe. The system was crash-tested for the impact condition of 14ton-80km/h-$15^{\circ}$, and it satisfied all evaluation criteria set forth in NCHRP Report 350 for a Test Level 4 safety appurtenance. Acceptable performances were obtained in computer simulations for the impact condition of S2.

  • PDF