• Title/Summary/Keyword: 지자기 센서

Search Result 211, Processing Time 0.026 seconds

개인용 탑승시스템 제어를 위한 스마트폰 인터페이스 설계

  • Kim, Yeon-Gyun;Kim, Dong-Heon
    • ICROS
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • 본 기술 특집호에서는 개인용 탑승시스템(PMS, Personal Mobility System) 혹은 이동로봇을 무선 원격 제어할 때 사용할 수 있는 인터페이스(지자기센서 기반형, 조그셔틀형)들을 소개하고, 사용자 편리성 제어 기반으로 인터페이스 방식을 분석한다. 지자기센서 기반의 절대방향 제어는 자기북극을 기준으로 한 지자기센서의 측정값인 방향각을 이용하여 스마트폰의 방향각에 탑승시스템의 방향각을 같도록 탑승시스템을 제어하는 것이다. 탑승시스템에 서있는 탑승자가 스마트폰을 이용하여 탑승시스템이 원하는 방향으로 이동하기 위하여 제어할 때에는 스마트폰의 화면에 표시되어진 시작 버튼에 손가락을 놓고, 원하는 방향으로 스마트폰을 좌 우로 회전시키면 탑승시스템은 그 방향으로 회전을 하며 주행한다. 터치기반의 조그셔틀 인터페이스를 이용하여 원하는 방향으로 이동하기 위해서는 탑승시스템에 서있는 사용자가 스마트폰의 화면에 표시되어진 조그셔틀 스위치에 손가락을 놓고, 원하는 방향대로 손가락을 움직이면 스마트폰은 블루투스 무선통신을 통하여 탑승시스템을 주행 할 수 있다.

Design of Wireless Underground Sensor System Using Magnetic Field Communication (자기장 통신을 이용한 무선 지중 센서 시스템 설계)

  • Kim, Sun-Hee;Lee, Seungjun;Hwang, Kyu-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.97-102
    • /
    • 2012
  • Recently, a wireless sensor network system has been receiving great attention for management of underground facilities. However, traditional wireless communication systems using microwaves in several hundred MHz ~ several GHz experience significant performance degradation in the non-uniform underground environment. In this research, in order to make a robust communication for the underground facilities, we propose a wireless underground sensor system based on magnetic field communication. In 3 meters underground environment including rocks, soils, water, etc.,, our proposed sensor network system has proved fully functional and met its performance specification.

Design of Intelligent system with Fuzzy Logic for MR Sensor in destortion (Fuzzy Logic을 이용한 센서의 왜곡 현상의 지능형 추론 시스템 설계)

  • Kim, Young-Gu;Bak, Chang-Gui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1986-1991
    • /
    • 2007
  • In this paper, we discussed, intelligent soft filter for MR(magnetoresistive) sensor. Most navigation systems today use some type of compass to determine heading direction. Using the earth's magnetic field, electronic compass based on MR(magnetoresistive) sensors can electrically resolve better then 0.1 degree rotation. Intelligent methode for soft building a one degree compass using MR(magnetoresistive) sensors will also be discussed. Compensation techniques are shown to correct for compass tilt angels and nearby ferrous material disturbances. we proved the fuzzy logic that based on the way the ham deals with inexact information is useful for MR sensors.

Magnetic Guidance Vehicle using Up-and-down Rotating Type Differential Drive Unit (상하 회전형 차동 구동부를 이용한 자기 유도 무인운반차)

  • Song, Hajun;Cho, Hyunhak;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.123-128
    • /
    • 2014
  • This paper presents the study about MGV(Magnetic guidance vehicle) with up-and-down rotating type differential drive unit. Previous MGV needs the landmarks to get the driving information and additional sensor to recognize the landmarks except for localization sensor. Previous MGV requires at least 2 drive units when common fixed differential drive unit is used because it occurs the problems with driving control and localization error from imbalance of the MGV's weight. To solve such problems, we propose the MGV using up-and-down rotating type differential drive unit. Proposed MGV recognizes the driving information from the pattern which is consisted of both pole of magnet without landmarks and additional sensors, and it control the backward movement using up-and-down rotating type differential drive unit instead of common drive units. Proposed MGV considers KF(Kalman filter) to improve the localization accuracy. To verify the performance of proposed method, we designed MGV for the experiment. As the results, we can confirm the performance of propoesed method to recognize the pattern and to control the backward movement. With respect to localization, proposed method has the less RMSE about 5.6904 mm than previous method.

An Intensity Based Self-referencing Fiber Optic Sensor Using Tunable Fabry-Perot Filter and FBG (가변 페브리-페로 필터와 FBG를 이용한 광세기 기반 자기기준 광섬유 센서)

  • Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.146-152
    • /
    • 2013
  • In this paper, we have proposed and experimentally demonstrated an intensity-based self-referencing fiber optic sensor. The proposed fiber optic sensor consists of a broadband light source (BLS), fiber Bragg grating (FBG), tunable Fabry-Perot (F-P) filter, and LabVIEW program. We define the measurement parameter (X) and the calibration parameter (${\beta}$) to determine the transfer function(H) of the self-referencing fiber optic sensor, and the validity of the theoretical analysis is confirmed by experiments. The self-referencing characteristic for the proposed system has been validated by showing that the measurement parameter (X) is invariant for BLS optical power attenuations of 0 dB, 3 dB, and 6 dB. Also, the measured result is irrelevant to the FBGs with different characteristics. This means that the proposed fiber optic sensor offers the flexibility for determining the FBGs needed for implementation. Experimental results for the proposed fiber optic sensor are in good agreement with a theoretical analysis for BLS optical power attenuations and for three FBG pairs with different characteristics. So, the proposed fiber optic sensor has several benefits, including the self-referencing characteristic and the flexibility to determine the FBGs.

Calibration Technique of Liquid Density Measurement using Magnetostriction Technology (자기 변형 기술을 이용한 액체 밀도 측정의 보정 기술)

  • Seo, Moogyo;Hong, Youngho;Choi, Inseoup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.178-184
    • /
    • 2014
  • In this study, we develop liquid density sensor by measuring of balanced position between gravity and bouyancy, corresponding to liquid density, using distance measuring by magnetostriction technology. For improvement of accuracy of liquid density sensor system. And we derive the related equation between liquid density and moving distance of density sensor, and make the calibration method for liquid density sensor by magnetostriction technology. Using fabricated liquid density sensing system and derived equation, have measured the density of several liquids. And compare it to measuring results using Oscillating U-tube type high accuracy density meter, having 0.000001 g/cc resolution. The deviation of results between two density measuring systems was less than 0.001 g/cc.

A study on Non-contacted Transmitter Switch for Vehicle (비 접촉식 차량용 Transmitter Switch에 관한 연구)

  • Ahn, Jong-Young;Kim, Young-Sub;Kim, Sung-Su;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.245-249
    • /
    • 2010
  • Now normally using a contact method of vehicle Inhibitor Switch that is use direct voltage level signal. This method is good solution for signal deliverly. but The contacted method have a short lifetime because of deterioration of contact surface. so we suggest to non-contacted method using magnetic sensor. The magnetic sensor is used to non-contacted method that is solution for problem of contacted method. In this paper using that of magnetic sensor feature, so we applied to Vehicle Transmitter switch that of non-contacting method. Sensor voltage outputs have variable electric potential that normally 0 mV to 150 mV, and it is depend on Switch Angle. we used two differential sin wave for switching of 5 state signal.

A Study on Self-Localization of Home Wellness Robot Using Collaboration of Trilateration and Triangulation (삼변·삼각 측량 협업을 이용한 홈 웰니스 로봇의 자기위치인식에 관한 연구)

  • Lee, Byoungsu;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. The self-Localization of indoor mobile robot is very important for the sophisticated trajectory control. In this paper, the robot's self-localization algorithm is designed by RF sensor network and fuzzy inference. The robot realizes its self-localization, using RFID sensors, through the collaboration algorithm which uses fuzzy inference for combining the strengths of triangulation and triangulation. For the triangulation self-Localization, RSSI is implemented. TOA method is used for realizing the triangulation self-localization. The final improved position is, through fuzzy inference, made by the fusion algorithm of the resultant coordinates from trilateration and triangulation in real time. In this paper, good performance of the proposed self-localization algorithm is confirmed through the results of a variety of experiments in the base of RFID sensor network and reader system.

Sensor Fusion for Motion Capture System (모션 캡쳐 시스템을 위한 센서 퓨전)

  • Jeong, Il-Kwon;Park, ChanJong;Kim, Hyeong-Kyo;Wohn, KwangYun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.3
    • /
    • pp.9-15
    • /
    • 2000
  • We Propose a sensor fusion technique for motion capture system. In our system, two kinds of sensors are used for mutual assistance. Four magnetic sensors(markers) are attached on the upper arms and the back of the hands for assisting twelve optical sensors which are attached on the arms of a performer. The optical sensor information is not always complete because the optical markers can be hidden due to obstacles. In this case, magnetic sensor information is used to link discontinuous optical sensor information. We use a system identification techniques for modeling the relation between the sensors' signals. Dynamic systems are constructed from input-output data. We determine the best model from the set of candidate models using the canonical system identification techniques. Our approach is using a simple signal processing technique currently. In the future work, we will propose a new method using other signal processing techniques such as Wiener or Kalman filter.

  • PDF

3D Electromagnetic Analysis of Magnetic Sensor for Improvement of Motor (모터의 성능향상을 위한 마그네틱 센서의 3차원 전자장 해석)

  • Shim, Sang-Oh;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2381-2387
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic hall sensor using hall effect elements with yoke. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from disturbance in the vicinity of hall effect elements. Thus, The paper studies a way which makes sine and cosine waveforms robust in disturbance and reduces harmonics by installing a yoke around Hall effect elements. The angle detection simulation for the magnetic hall sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. For the Taguchi method, three design parameters related to position of hall effect elements and shape of hall effect element yoke are selected.