• Title/Summary/Keyword: 지오텍스타일 차수재

Search Result 4, Processing Time 0.015 seconds

Long-Term Performance of Geotextile and Geomembranes by Installation Damage (시공 시 손상에 의한 지오텍스타일 및 지오멤브레인의 장기성능)

  • 전한용;목문성;류원석;이준석;홍상진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.235-238
    • /
    • 2003
  • 폐기물 매립시스템은 크게 폐기물의 토양으로의 유출에 의한 오염방지를 위한 lining system과 폐기물에서 발생하는 가스의 방출차단과 빗물의 매립시스템으로의 침투방지를 위한 covering system으로 나뉘어진다. Lining system은 폐기물 하부에 차수층, 침출수 배수층, 침출수 차단층과 차수재 보호층 순으로 구성되며, covering system은 폐기물 상부에 집수관을 설치한 후 중간 복토층을 둔 후, 가스 차단층, 봉합층, 배수장치와 보호층 순으로 구성되어진다. (중략)

  • PDF

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

Estimation of Dynamic Interface Friction Properties of Geosynthetics (토목섬유의 동적 경계면 마찰특성 평가)

  • 김동진;서민우;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.265-275
    • /
    • 2003
  • In this study, shaking table tests were conducted to estimate dynamic interface properties between geosynthetics such as geomembrane, geotextile and geosynthetic clay liner. Accelerations of both shaking table and upper box, and relative displacements between geosynthetics under dynamic loading were measured. Also, the influence of normal stress, frequency of excitation and dry/wet conditions were investigated through the analyses of test results. from the test results, it was found that there is a limited acceleration below which dynamic farce can be transmitted between geosynthetics without the loss of horizontal acceleration. Dynamic interface friction angle between geosynthetics could be calculated through the limited acceleration. Relative displacements induced along geosynthetic interfaces under dynamic loading were not consistent depending on the type of interface and test conditions. The maximum slip displacements between geosynthetics are normalized and normalized slip equations were developed for each interface. By using the normalized slip equation, maximum slip displacements for the geosynthetic interface could be predicted for the given base acceleration and frequency of excitation.