• Title/Summary/Keyword: 지열원 열펌프 시스템

Search Result 49, Processing Time 0.026 seconds

A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector (Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구)

  • Baek, Nam-Choon;Lee, Jin-Kook;Yu, Chang-Kyun;Yoon, Eung-Sang;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

A Study on the Operating Performance of a Cascade Heat Pump (캐스케이드 열펌프시스템의 운전 특성에 관한 연구)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jea-Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

The Outlet Temperature Prediction of In-Situ Thermal Response Test using CFD Analysis (CFD 해석을 이용한 현장 열응답 시험의 출구온도 예측)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • The in-situ thermal response test for the design of a ground heat exchanger of geothermal heat pumps have difficulty in predicting the outlet temperature according to the variation of conditions due to the expense and time. This paper suggests a 3-D CFD analysis method to predict the heat transfer performance of vertical type ground heat exchanger, which is mostly used in national, and the outlet temperature and the slope of two in-situ thermal response tests were compared to test the proposed CFD reliability. The results of CFD analysis showed that the outlet temperature was predicted to within $0.5^{\circ}C$ of the actual value and the slope was predicted to within 1.6%. The reliability of the CFD analysis method was confirmed using this process, and the outlet temperature prediction of the two in-situ thermal response tests was obtained by changing ${\pm}20%$ of the flow rate and the effective thermal conductivity conditions, respectively. The results of CFD analysis showed that the outlet temperature of Case 1 was 28.0 (-20%) and $29.6^{\circ}C$ (+20%) for the flow rate variation and $29.6^{\circ}C$ (-20%) and $28.0^{\circ}C$ (+20%) for the effective thermal conductivity variation, and the outlet temperature of Case 2 was 28.4 (-20%) and $29.8^{\circ}C$ (+20%) for the flow rate variation and $29.7^{\circ}C$(-20%) and $28.4^{\circ}C$(+20%) for the effective thermal conductivity variation.

Analysis of Soil Thermal Conductivities, Borehole Thermal Resistances and Initial Soil Temperature with In-Situ Testing in South Korea (현지 측정에 의한 남한지역의 지중유효열전도도, 보어홀 전열저항 및 초기온도 분석)

  • Ro, Jeong-Geun;Yon, Kwangseok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.68-74
    • /
    • 2012
  • Investigation of the effective soil thermal conductivity($k$) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. The first step is measured for initial soil temperature. This is done by supplying a only pump power into a borehole heat exchanger. They need to supply into water unload heat power more than 30 minutes. In this study, the initial soil temperature was found to analysis $14.1{\sim}16.0^{\circ}C$,the ratio was 68.7% represented. In this case of $k$, was 2.1~3.0 $W/m{\cdot}k$, $R_b$ was 0.11~0.20 $m{\cdot}K/W$. In this work, it is also shown that the distribution of a soil thermal conductivity and borehole thermal resistance were on the influence of initial soil temperature. And soil thermal conductivity was related with factors of equation by linear least square method, borehole thermal resistance was on the influence of composite factors.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

International Case Studies on the Eco-friendly Energy Towns with Hybrid Thermal Energy Supply System and Borehole Thermal Energy Storage (BTES) (친환경에너지타운에서 보어홀지중열 저장(BTES) 활용 융복합 열에너지 공급 시스템 사례 연구)

  • Shim, Byoung Ohan
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • This study reviews three eco-friendly energy towns with hybrid thermal energy supply systems and borehole thermal energy storage (BTES) in Canada and Denmark. The district heating and cooling systems were designed by using multi-source energy for the higher efficiency and reliability as well as environment. ADEU (Alexandra District Energy Utility) located at the developing area in the city of Richmond, Canada was designed to supply district energy with the installation of 726 borehole heat exchangers (BHEs) and a backup boiler using natural gas. DLSC (Drake Landing Solar Community) located in the town of Okotoks, Canada is a district system to store solar thermal energy underground during the summer season by seasonal BTES with 144 BHEs. Brædstrup Solpark district heating system located in Denmark has been conducted energy supply from multiple energy sources of solar thermal, heat pump, boiler plants and seasonal BTES with 48 BHEs. These systems are designed based on social and economic benefits as well as nature-friendly living space according to the city based energy perspective. Each system has the energy center which distribute the stored thermal energy to each house for heating during the winter season. The BHE depth and ground thermal storage volume are designed by the heating and cooling load as well as the condition of ground water flow and thermophysical properties of the ground. These systems have been proved the reliance and economic benefits by providing consistent energy supply with competitive energy price for many years. In addition, the several expansions of the service area in ADEU and Brædstrup Solpark have been processed based on energy supply master plan. In order to implement this kind of project in our country, the regulation and policy support of government or related federal organization are required. As well as the government have to make a energy management agency associated with long-term supply energy plan.