• Title/Summary/Keyword: 지역 히스토그램 비교

Search Result 37, Processing Time 0.019 seconds

Modified Exposure Fusion with Improved Exposure Adjustment Using Histogram and Gamma Correction (히스토그램과 감마보정 기반의 노출 조정을 이용한 다중 노출 영상 합성 기법)

  • Park, Imjae;Park, Deajun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.327-338
    • /
    • 2017
  • Exposure fusion is a typical image fusion technique to generate a high dynamic range image by combining two or more different exposure images. In this paper, we propose block-based exposure adjustment considering unique characteristics of human visual system and improved saturation measure to get weight map. Proposed exposure adjustment artificially corrects intensity values of each input images considering human visual system, efficiently preserving details in the result image of exposure fusion. The improved saturation measure is used to make a weight map that effectively reflects the saturation region in the input images. We show the superiority of the proposed algorithm through subjective image quality, MEF-SSIM, and execution time comparison with the conventional exposure fusion algorithm.

A Implementation of the Feature-based Hierarchical Image Retrieval System (특징기반 계층적 영상 검색 시스템의 구현)

  • 김봉기;김홍준;김창근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.

  • PDF

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

Regional Background Levels of Carbon Monoxide Observed in East Asia during 1991~2004 (1991~2004년 동아시아에서 관측한 일산화탄소의 지역적 배경 농도)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.643-652
    • /
    • 2006
  • Data of the carbon monoxide concentration observed in Mt. Waliguan in China (WLG), Ulaan Uul in Mongolia (UUM), Tae-ahn Peninsula in Korea (TAP), and Ryori in Japan (RYO) were analyzed for a long period between 1991 and 2004. The annual average concentration of carbon monoxide was the highest at TAP $(233{\pm}41ppb)$ followed by $RYO(171{\pm}36ppb),\;UUM(155{\pm}26ppb),\;and\;WLG(135{\pm}22ppb)$. The seasonal variations being high in spring and low in summer were observed in other areas of Eastern Asia except WLG. TAP was high in carbon monoxide concentration in all seasons compared to WLG, UUM and RYO and shows wide distribution of concentration in the histogram, which is caused by the influence of large-scale air pollution due to its downwind location close to the East Asian continent, China in particular. Also, our data was compared with data measured at Mauna Loa (MLO) in Hawaii. According to the origin of the isentropic backward trajectory and its transport passage, carbon monoxide concentration observed in TAP was analyzed as follows: continental background airflows (CBG) were $216{\pm}47ppb$; regionally polluted continental airflows (RPC) were $316{\pm}56ppb$; Oceanic background airflows (OBG) were $108{\pm}41ppb$; and Partly perturbed oceanic airflows (PPO) were $161{\pm}6ppb$. The high concentration of carbon monoxide in TAP is due to the airflow from East Asian continent origin rather than that from the North Pacific origin. Especially, RPC which passes through the eastern China appeared to be the highest in concentration in spring, fall, and winter. However, OBG was affected by the North Pacific air mass with a low carbon monoxide concentration in summer. The NOAA satellite images and GEOS-CHEM model simulation confirmed a large-scale air pollution event that was in the course of expansion from southeastern China bound to the Korean Peninsula and the Korea East Sea by way of the Yellow Sea.

Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System (정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구)

  • Hyun-Woo Jeong;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.679-684
    • /
    • 2023
  • Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.