• Title/Summary/Keyword: 지역 밝기 차

Search Result 22, Processing Time 0.025 seconds

The Second Survey of Night Sky Brightness in the Capital Region of Korea

  • An, Sung-Ho;Bae, Hyun-Jin;Yu, Jinhee;Roh, Eunji;Chiang, Howoo;Kim, Jinhyub;Kim, Seongjoong;Park, Songyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.88.2-88.2
    • /
    • 2015
  • 지난 2009-2010년 수행한 제 1차 수도권 밤하늘 밝기 측정에 이어, 우리는 2014년 12월부터 2015년 2월까지 제 2차 수도권 밤하늘 밝기 측정을 수행하였다. 이번 2차 측정에서는 지난 1차 측정과 가능한 한 동일한 장소와 조건에서 밤하늘 밝기를 측정함으로써, 지난 5년간 발생한 밤하늘 밝기 및 주변 환경의 변화와 이 둘 사이의 상관관계를 알아보고자 하였다. 밤하늘 밝기 측정에 사용된 기기는 1차 측정과 마찬가지로 'SQM(Sky Quality Meter)-L'을 사용하였다. SQM-L은 표면등급($mag/arcsec^2$) 단위로 밤하늘을 측정하며 측정 오차는 ${\pm}0.1$ 등급이다. 이번 측정 결과 밤하늘 밝기가 가장 어두운 지역은 경기도 가평군 청평면 고성리(20.6 등급)로, 1차 측정에서의 가장 어두운 지역과 동일했다. 반면 가장 밝은 지역은 서울 영등포구 윤중초교와 서울 중구 남산초교(16.5 등급)로 나타났으며, 가장 어두운 지역과 밝은 지역 사이의 밤하늘 밝기 차이는 약 40배(~4 등급)로 나타났다. 이번에 측정한 밤하늘 밝기는 지난 1차 관측에 비해 전 지역에서 평균 0.5 등급 어두워진 것으로 나타났다. 특히 서울 은평구 갈현초교는 5년 사이에 1.5 등급 어두지면서 가장 큰 차이를 보였다(1차: 16.0 등급, 2차: 17.5 등급). 본 포스터에서는 이번 측정 결과와 진행 과정을 소개하고 두 관측 기간 사이에 발생한 밤하늘 밝기 변화의 원인에 대하여 토론하고자 한다.

  • PDF

Discrimination between Sea Fog and low Stratus Using Texture Structure of MODIS Satellite Images (MODIS 구름 영상의 표면 특성을 이용한 해무와 하층운의 구별)

  • Heo, Ki-Young;Min, Se-Yun;Ha, Kyung-Ja;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.571-581
    • /
    • 2008
  • The sea fog occurs frequently in the west coast of Korea in spring and summer. This study focused on the detection of sea fog using MODIS satellite images. We presented a method for sea fog detection based on the homogeneity level between low stratus and sea fog, which was that the top surface of sea fog had a homogeneous aspect while that of low stratus had a heterogenous aspect. The results showed that the both homogeneity of $11{\mu}m$ brightness temperature (BT) and brightness temperature difference (BTD, $BT_{3.7{\mu}m}-BT_{11{\mu}m}$) were available to discriminate sea fog from low stratus. The frequency of difference between BT in fog/stratus area and BT in clear area provided reasonable result. In addition, the threshold values of standard deviations of BT and BTD in the fog/stratus area were applicable to differentiate fog from low stratus.

3D Region Growing Algorithm based on Eigenvalue of Hessian matrix for Extraction of blood vessels (혈관추출을 위한 Hessian 행렬 고유치 기반 3 차원 영역확장 알고리즘)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1641-1644
    • /
    • 2004
  • 3차원 볼륨데이터에서 분할 대상영역의 밝기 값이 다양하면서 밝기 값이 유사한 영역과 인접한 경우 3차원 영역확장(region growing) 방법을 사용하여 영역을 분할하기 위해서는 영역확장의 중요한 요인인 동질성 기준 값의 적절한 선택이 요구된다. 본 논문에서는 영역 복셀(voxel)의 1차 미분 값의 크기인 기울기 크기(gradient magnitude)만으로 영역의 경계를 찾기가 쉽지않은 대상의 분할을 위해 볼륨데이터의 지역적인 밝기 값의 변화의 특징을 고려하면서 분할 대상영역의 복셀의 2차 미분(second partial derivation)을 행렬의 요소(element)로 갖는 Hessian 행렬의 고유치(eigenvalue)를 영역확장의 문턱치 결정에 이용하였다. 제안한 알고리즘은 3차원 영역확장의 결과에 가장 큰 영향을 미치는 적절한 문턱치의 선택으로 대상영역의 분할을 성공적으로 수행하여 3차원 영역확장의 단점을 보완하였다.

  • PDF

A Study about sub-sampling rate of neighboring pixel for local illumination compensation (영상의 지역적 밝기 보상을 위한 주변 화소 서브 샘플링율에 관한 연구)

  • Won, Dong-Jae;Moon, Joo-Hee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.207-208
    • /
    • 2016
  • 최근 차세대 비디오 코덱 기술로써 다양하게 논의 되고 있는 영상 내 지역적 밝기 보상 기술은 다수의 광원이 존재하는 영상 내 다른 영역 마다, 다른 밝기 변화 정도를 보상해주기 위한 방법이다. 상세하게는, 현재 CU의 주변 화소와 예측 블록의 주변 화소를 이용한 보상 계수를 계산하여 현재 CU의 예측 화소에 보상을 해주는 것이다. 이 때, 보상 계수를 구하기 위한 현재 CU와 예측 블록의 주변 화소들을 서브 샘플링함에 있어서, 현재 CU의 크기에 따라서 서브 샘플링율을 차등 설정하고 이에 따른 성능 변화를 분석한다.

  • PDF

Intensity Compensation for Efficient Stereo Image Compression (효율적인 스테레오 영상 압축을 위한 밝기차 보상)

  • Jeon Youngtak;Jeon Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.101-112
    • /
    • 2005
  • As we perceive the world as 3-dimensional through our two eyes, we can extract 3-dimensional information from stereo images obtained from two or more cameras. Since stereo images have a large amount of data, with recent advances in digital video coding technology, efficient compression algorithms have been developed for stereo images. In order to compress stereo images and to obtain 3-D information such as depth, we find disparity vectors by using disparity estimation algorithm generally utilizing pixel differences between stereo pairs. However, it is not unusual to have stereo images having different intensity values for several reasons, such as incorrect control of the iris of each camera, disagreement of the foci of two cameras, orientation, position, and different characteristics of CCD (charge-coupled device) cameras, and so on. The intensity differences of stereo pairs often cause undesirable problems such as incorrect disparity vectors and consequent low coding efficiency. By compensating intensity differences between left and right images, we can obtain higher coding efficiency and hopefully reduce the perceptual burden of brain to combine different information incoming from two eyes. We propose several methods of intensity compensation such as local intensity compensation, global intensity compensation, and hierarchical intensity compensation as very simple and efficient preprocessing tool. Experimental results show that the proposed algerian provides significant improvement in coding efficiency.

Image Histogram Equalization Based on Gaussian Mixture Model (가우시안 혼합 모델 기반의 영상 히스토그램 평활화)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.748-760
    • /
    • 2012
  • In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.

Non-rigid Registration Method of Lung Parenchyma in Temporal Chest CT Scans using Region Binarization Modeling and Locally Deformable Model (영역 이진화 모델링과 지역적 변형 모델을 이용한 시간차 흉부 CT 영상의 폐 실질 비강체 정합 기법)

  • Kye, Hee-Won;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.700-707
    • /
    • 2013
  • In this paper, we propose a non-rigid registration method of lung parenchyma in temporal chest CT scans using region binarization modeling and locally deformable model. To cope with intensity differences between CT scans, we segment the lung vessel and parenchyma in each scan and perform binarization modeling. Then, we match them without referring any intensity information. We globally align two lung surfaces. Then, locally deformable transformation model is developed for the subsequent non-rigid registration. Subtracted quantification results after non-rigid registration are visualized by pre-defined color map. Experimental results showed that proposed registration method correctly aligned lung parenchyma in the full inspiration and expiration CT images for ten patients. Our non-rigid lung registration method may be useful for the assessment of various lung diseases by providing intuitive color-coded information of quantification results about lung parenchyma.

Automatic determination of matching window histogram of gradient (그레디언트 히스토그램을 이용한 정합 창틀 크기의 자동적인 결정)

  • Moon, Chang-Gi;Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.3-7
    • /
    • 2007
  • 본 논문에서는 1m 공간해상도를 가지는 도시 지역의 위성영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트(gradient)의 히스토그램을 이용하여 스테레오 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 한 화소 거리의 대각 방향에 놓여진 4 개 화소들의 수직 및 수평 방향에 존재하는 화소간의 밝기값 차로 정의되는 그레디언트를 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 평탄화 지수 영상에서 에지 등과 같이 주변 화소의 밝기값과 차이가 큰 화소는 상대적으로 높은 평탄화 지수를,비에지 화소의 경우에는 낮은 평탄화 지수를 가지게 된다. 에지와 비에지를 판정하는 평탄화 임계값을 결정하기 위해 평탄화 지수 영상의 히스토그램 분포를 이용한다. 결정된 평탄화 임계값보다 작은 평탄화 지수를 가지는 정합 창틀 내의 화소들이 일정 비율보다 크면 비에지 화소로 판정하고 정합 창틀을 한 단계 더 크게 설정하는 방법으로 정합 창틀의 크기를 각 화소마다 가변적으로 변화시킨다. 제안한 방법을 IKONOS 스테레오 위성영상에 적용하여 고정 크기의 정합 창툴에 비해 정합 성능이 향상되는 것을 보였다.

  • PDF

Automatic Segmentation of Coronary Vessel in X-ray Angiography using Non-uniform Illumination Correction and Eigenvalue of Hessian Matrix (X-선 혈관 조영 영상에서 불균일 조명 보정과 Hessian 행렬 고유치를 이용한 심혈관 자동 분할)

  • Kim, Hye-Ryun;Kang, Mi-Sun;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.414-416
    • /
    • 2012
  • 본 논문에서는 X-선 혈관 조영 영상 내 심혈관의 추출 방법을 제안한다. 본 방법은 불균일 조명 보정 필터를 사용함으로써 X-선 영상 내에서 나타나는 일정하지 않은 contrast, 낮은 명암도 및 불균일 조명 문제를 해결한다. 또한 영상의 지역적인 밝기 값의 변화의 특징을 고려하면서 분할 대상영역의 각 픽셀들의 2 차 미분((second partial derivation)을 행렬의 요소(element)로 갖는 Hessian 행렬의 고유치 (eigenvalue)를 영역확장의 문턱치 결정에 이용하여 전역적인 밝기값(intensity)만을 사용하는 분할의 단점을보완하였다.

Automatic Segmentation of the Prostate in MR Images using Image Intensity and Gradient Information (영상의 밝기값과 기울기 정보를 이용한 MR영상에서 전립선 자동분할)

  • Jang, Yj-Jin;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.695-699
    • /
    • 2009
  • In this paper, we propose an automatic prostate segmentation technique using image intensity and gradient information. Our method is composed of four steps. First, rays at regular intervals are generated. To minimize the effect of noise, the start and end positions of the ray are calculated. Second, the profiles on each ray are sorted based on the gradient. And priorities are applied to the sorted gradient in the profile. Third, boundary points are extracted by using gradient priority and intensity distribution. Finally, to reduce the error, the extracted boundary points are corrected by using B-spline interpolation. For accuracy evaluation, the average distance differences and overlapping region ratio between results of manual and automatic segmentations are calculated. As the experimental results, the average distance difference error and standard deviation were 1.09mm $\pm0.20mm$. And the overlapping region ratio was 92%.