• Title/Summary/Keyword: 지역환경

Search Result 19,483, Processing Time 0.047 seconds

The First North Korean Painting in the Collection of the National Museum of Korea: Myogilsang on Diamond Mountain by Seon-u Yeong (국립중앙박물관 소장 산률(山律) 선우영(鮮于英) 필(筆) <금강산 묘길상도>)

  • Yi, Song-mi
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.97
    • /
    • pp.87-104
    • /
    • 2020
  • Myogilsang on Diamond Mountain, signed and dated (2000) by Seon-u Yeong (1946-2009), is the first work by a North Korean artist to enter the collection of the National Museum of Korea (fig. 1a). The donor acquired the painting directly from the artist in Pyeongyang in 2006. In consequence, there are no issues with the painting's authenticity.This painting is the largest among all existing Korean paintings, whether contemporary or from the Joseon Dynasty, to depict this iconography (see chart 1. A Chronological List of Korean Myogilsang Paintings.) It is ink and color on paper, measures 130.2 × 56.2 centimeters, and is in a hanging scroll format. Since this essay is intended as a brief introduction of the painting and not in-depth research into it, I will simply examine the following four areas: 1. Seon-u Yeong's background; 2. The location and the traditional appellation of the rock-cut image known as Myogilsang; 3. The iconography of the image; and 4) A comparative analysis of Seon-u Yeong's painting in light of other paintings on the same theme. Finally, I will present two more of his works to broaden the understanding of Seon-u Yeong as a painter. 1. Seon-u Yeong: According to the donor, who met Seon-u at his workshop in the Cheollima Jejakso (Flying Horse Workshop) three years before the artist's death, he was an individual of few words but displayed a firm commitment to art. His preference for subjects such as Korean landscapes rather than motifs of socialist realism such as revolutionary leaders is demonstrated by the fact that, relative to his North Korean contemporaries, he seems to have produced more paintings of the former. In recent years, Seon-u Yeong has been well publicized in Korea through three special exhibitions (2012 through 2019). He graduated from Pyeongyang College of Fine Arts in 1969 and joined the Central Fine Arts Production Workshop focusing on oil painting. In 1973 he entered the Joseon Painting Production Workshop and began creating traditional Korean paintings in ink and color. His paintings are characterized by intense colors and fine details. The fact that his mother was an accomplished embroidery specialist may have influenced on Seon-u's choice to use intense colors in his paintings. By 1992, he had become a painter representing the Democratic People's Republic of Korea with several titles such as Artist of Merit, People's Artist, and more. About 60 of his paintings have been designated as National Treasures of the DPRK. 2. The Myogilsang rock-cut image is located in the Manpok-dong Valley in the inner Geumgangsan Mountain area. It is a high-relief image about 15 meters tall cut into a niche under 40 meters of a rock cliff. It is the largest of all the rock-cut images of the Goryeo period. This image is often known as "Mahayeon Myogilsang," Mahayeon (Mahayana) being the name of a small temple deep in the Manpokdong Valley (See fig. 3a & 3b). On the right side of the image, there is an intaglio inscription of three Chinese characters by the famous scholar-official and calligrapher Yun Sa-guk (1728-1709) reading "妙吉祥"myogilsang (fig. 4a, 4b). 3. The iconography: "Myogilsang" is another name for the Bhodhisattva Mañjuśrī. The Chinese pronunciation of Myogilsang is "miaojixiang," which is similar in pronunciation to Mañjuśrī. Therefore, we can suggest a 妙吉祥 ↔ Mañjuśrī formula for the translation and transliteration of the term. Even though the image was given a traditional name, the mudra presented by the two hands in the image calls for a closer examination. They show the making of a circle by joining the thumb with the ring finger (fig. 6). If the left land pointed downward, this mudra would conventionally be considered "lower class: lower life," one of the nine mudras of the Amitabha. However, in this image the left hand is placed across its abdomen at an almost 90-degree angle to the right hand (fig. 6). This can be interpreted as a combination of the "fear not" and the "preaching" mudras (see note 10, D. Saunders). I was also advised by the noted Buddhist art specialist Professor Kim Jeong-heui (of Won'gwang University) to presume that this is the "preaching" mudra. Therefore, I have tentatively concluded that this Myogilsang is an image of the Shakyamuni offering the preaching mudra. There is no such combination of hand gestures in any other Goryeo-period images. The closest I could identify is the Beopjusa Rock-cut Buddha (fig. 7) from around the same time. 4. Comparative analysis: As seen in , except for the two contemporary paintings, all others on this chart are in ink or ink and light color. Also, none of them included the fact that the image is under a 40-meter cliff. In addition, the Joseon-period paintings all depicted the rock-cut image as if it were a human figure, using soft brushstrokes and rounded forms. None of these paintings accurately rendered the mudra from the image as did Seon-u. Only his painting depicts the natural setting of the image under the cliff along with a realistic rendering of the image. However, by painting the tall cliff in dark green and by eliminating elements on either side of the rock-cut image, the artist was able to create an almost surreal atmosphere surrounding the image. Herein lies the uniqueness of Seon-u Yeong's version. The left side of Seon-u's 2007 work Mount Geumgang (fig. 8) lives up to his reputation as a painter who depicts forms (rocks in this case) in minute detail, but in the right half of the composition it also shows his skill at presenting a sense of space. In contrast, Wave (fig. 9), a work completed one year before his death, displays his faithfulness to the traditions of ink painting. Even based on only three paintings by Seon-u Yeong, it seems possible to assess his versatility in both traditional ink and color mediums.

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF