• Title/Summary/Keyword: 지역용수

Search Result 944, Processing Time 0.023 seconds

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Reassessment on the Four Major Rivers Restoration Project and the Weirs Management (4대강 살리기사업의 재평가와 보의 운용방안)

  • Lee, Jong Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.225-236
    • /
    • 2021
  • The master plan for the Four Rivers Restoration Project (June 2009) was devised, the procedure of pre-environmental review (June 2009) and environmental impact assessment (Nov. 2009), and post-environmental impact survey were implemented, and 4 times audits also inspected. and finally the Ministry of Environment's Four Rivers Investigation and Evaluation Planning Committee proposed the dismantling or partial dismantling of the five weirs of the Geum River and Yeongsan River. But controversies and conflicts are still ongoing. Therefore, this study intend to reestablish the management plan for the four major rivers by reviewing and analyzing the process so far. The results are as follows. First, a cost-benefit analysis should be performed by comparing the water quality impact of weir operation and weir opening. Therefore, it is inevitably difficult to conduct cost-benefit analysis. Second, according to the results of cost-benefit analysis on the dismantling of the Geum River and the Yeongsan River, the dismantling of the weir and the regular sluice gate opening was decided. However, there is a problem in the validity of the decision to dismantle the weir because the cost-benefit analysis for maintaining the weir is not carried out. Third, looking at the change in water quality of 16 weirs before and after the Four Major Rivers Restoration Project, COD and Chl-a were generally deteriorated, and BOD, SS, T-N, and T-P improved. However, in the cost-benefit analysis related to water quality at the time of weir dismantling, only COD items were targeted. Therefore, the cost of BOD, SS, T-N, and T-P items improved after the project were not reflected in the cost-benefit analysis of dismantling weirs, so the water quality benefits were exaggerated. Fourth, in the case of Gongju weir and Juksan weir, most of them are movable weirs, so opening the weir alone can have the same effect as dismantling when the water quality deteriorates. Since the same effect can be expected, there is little need to dismantle the weirs. Fifth, in order to respond to frequent droughts and floods, it is desirable to secure the agricultural water supply capacity to the drought areas upstream of the four majorrivers by constructing a waterway connected to the weir. At present it is necessary to keep weirs rather than dismantling them.

A study on the simulation method for the flushing flowrate and velocity in the watermain using a hydrant and a drain valve (소화전과 이토변을 이용한 플러싱 적용 시 관 내 세척유량과 유속 모의 방안에 관한 연구)

  • Gim, ARin;Lee, Eunhwan;Lee, SongI;Kim, kwang hyun;Jun, Hwandon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1251-1260
    • /
    • 2022
  • Recently, due to the deterioration of watermains and the detachment of scale which is accumulated on the watermain surface, water quality accidents in a water supply network occur frequently. As scale accumulated on watermains is stabilized, it may not cause water quality accidents under the normal operating condition. However, due to water hammer or transient flow caused by the abrupt velocity and/or direction of flow change, it can be detached from the watermain surface resulting in water quality accidents. To prevent these kinds of water quality accidents, it is required to remove scale by watermain cleaning regularly. Many researches about flushing which is the most popular water cleaning method are focused on the desirable velocity criteria and the cleaning condition to accomplish the effect of flushing whereas less amount of research effort is given to develop a method to consider whether the desirable velocity for flushing can be obtained before flushing is performed. During flushing, the major and minor headloss is occurred when flushing water flows through a hydrant or drain valve. These headloss may slow down the velocity of flushing water so that it can reduce the flushing effect. Thus, in this study, we suggest a method to simulate the flow velocity of flushing water using "MinorLoss Coefficient" and "Emitter Coefficient" in EPANET. The suggested method is applied to a sample network and the water supply network of "A" city in Korea to compare the flushing effect between "flushing through a hydrant" and "flushing through a drain valve". In case of "flushing through a hydrant", if the hydraulic condition ocurring from a watermain pipe connecting to the inlet pipe of a hydrant to the outlet of a hydrant is not considered, the actual flowrate and velocity of a flow is less than the simulated flowrate and velocity of a flow. In case of "flushing through a drain valve", the flushing velocity and flowrate can be easily simulated and the difference between the simulated and the actual velocity and flowrate is not significant. Also, "flushing through a drain valve" is very effective to flushing a long-length pipe section because of its efficiency to obtain the flushing velocity. However, the number and location of a drain valve is limited compared to a hydrant so that "flushing through a drain valve" has a limited application in the field. For this reason, the engineer should consider various field conditions to come up with a proper flushing plan.

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF