기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.
지구온난화와 기후변화의 영향으로 전 지구적으로 이상홍수, 이상가뭄, 한파와 같은 이상기상 현상이 빈번하게 발생하고 있다. 국내에서는 2010년 추석 광화문 침수사태와 2011년 우면산 산사태와 같은 국지성 집중호우로 인한 인적 물적 피해가 속출하고 있다. 전통적으로 시기나 양적인 측면에서 대부분 장마기간에 국한되었던 강우집중현상이 과거와 달리 특정기간에 상관없이 발생하고 단기성, 국지성을 지닌 호우의 발생빈도가 높아지는 등 국내 강우의 특성이 변하고 있다. 이러한 변화에 대응하기 위해서 강우예측과 유출량예측의 정확도를 높이기 위한 시도가 다양하게 이루어지고 있다. 강우예측의 정확성을 높이기 위해 기상청에서는 단기예보를 목적으로 전지구 통합모델과 지역 통합모델을 연계한 동네예보를 수행하고 있으며, 초단기 예보를 위한 목적으로 VSRF, SCAN, VDRAS, MAPLE 등의 예보를 수행하고 있다. 홍수량 예측에서는 일반적으로 사용하고 있는 물리적 기반의 모형에 레이더강우와 같은 격자형 강우자료를 사용하여 정확성을 높이거나, 기존의 집중형 모형을 분포형 모형으로 대체하기 위한 연구 등이 이루어지고 있으며, 모형 구축이 간편하고 예측 정확도가 우수하다는 장점으로 인해 신경회로망이나 퍼지추론기법 등을 사용한 연구도 지속적으로 이루어지고 있다. 본 연구에서는 수자원분야에 산재한 불확실성을 적극적으로 인정하고 수학적으로 해석하기 위한 이론인 퍼지이론에 신경망 이론을 도입한 neuro-fuzzy 기법을 사용하여 홍수량을 예측하였다. 모형의 입력자료로는 관측된 강우자료와 유출량자료 및 기상청에서 제공하는 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) 강우예측자료를 사용하여 적용성을 평가해보았다. 모형의 적용성을 평가하기 위해 시험유역을 충주댐 상류 유역으로 선정하였으며, 2010년 2011년 홍수기의 충주댐 유입량을 예측하였다. 모형의 입력자료를 변경하여 입력자료의 변화에 따른 결과를 비교하였고, clustering 반경의 변화에 따른 정확도를 비교하였다. 모형의 정확도는 평균제곱근오차와 첨두수위오차를 통해 비교하였으며, 비교결과 전반적으로 lead time이 길어질수록 MAPLE 사용 시 예측 정확도가 우수하였고, clustering 반경은 0.5일 때 가장 우수한 결과를 보였다.
새만금간척지역은 동경 $126^{\circ}10'{\sim}126^{\circ}50'$와 북위 $35^{\circ}35'{\sim}36^{\circ}05'$ 위치하고 있다. 새만금간척지역은 대조차가 5.6m 이고 최대 조유속은 $1.41m\;s^{-1}$ 이다. 조간대 침전물의 대부분은 금강, 만경, 동진강으로부터 유입되고 있다. 이 지역의 저질은 실트질 모래로 구성되어 있다. 동절기의 바람은 북서풍이 우세하다. 새만금간척면적은 40,100ha 이고 방조제의 길이는 33km이다. 본 연구의 목적은 강 진단모델과 예보모델에 의하여 간척전 후의 잔차류의 계절변화를 규명하는 것이다.
최근 호우의 빈도와 규모는 증가하는 추세이며 이에 따른 홍수 피해는 많은 피해를 야기하고 있다. 이러한 관점에서 홍수 피해에 대한 선제적 대응을 위한 요소로써 초단시간 강우예측 정보의 중요성은 매우 높다. 특히, 레이더 자료 기반의 강우예측은 수치예보모델과 비교하여 3시간 이내의 짧은 선행시간 이내의 높은 정확도를 갖고 있어 홍수예보에 다수 활용되고 있다. 최근에는 강우자료의 복잡한 관계와 특징을 고려하기 위해 딥러닝 기반의 강우예측 활용 사례가 증가하고 있으나 국내 적용 사례는 적어 관련 연구가 요구되는 실정이다. 본 연구에서는 레이더 강우를 활용한 딥러닝 기반의 강우예측 기법을 제안하고 이에 대한 적용성을 평가하고자 한다. 2차원 레이더 강우자료의 특징과 시계열 특성을 고려하기 위한 심층신경망 구조를 제안하였으며 기존 딥러닝 모형과의 비교를 통해 활용 가능성을 제시하고자 하였다. 적용 대상지역은 한강 유역으로 선정하였다. 정성적 평가를 위해 임계성공지수(CSI)를 활용하여 예측 강우에 대한 정확도를 평가하였으며 정량적 평가를 위해 예측 강우와 관측 강우의 상관관계를 분석하였다. 평가 결과, 제안하는 방법이 기존 모형과 비교하여 예측오차의 범위가 적고 강우의 위치 변화를 잘 반영하는 것으로 나타났다. 본 연구결과는 초단기간 강우예측 자료를 활용하는 홍수예보의 정확도 향상에 기여할 것으로 기대된다.
미세먼지의 인체 영향이 밝혀지며 예보정확도 개선에 대한 요구가 증가하고 있다. 이에 기계 학습 기법을 도입하여 예측 정확성을 높이려는 노력이 수행되고 있으나, 저농도 발생 비율이 매우 큰 미세먼지 데이터로 인해 전체 예측 성능이 떨어지는 문제가 있다. 본 논문에서는 PM10 미세먼지 예보 정확도 향상을 위해 농도별 분리 예측 모델을 제안한다. 이를 위해 천안 지역의 기상 및 대기오염 인자를 활용하여 저, 고농도별 예측 모델을 설계하고 전 영역 예측 모델과의 성능 비교를 수행하였다. RMSE, MAPE, 상관계수 및 AQI 정확도를 통한 성능 비교 결과, 전체 기준에서 예측 성능이 향상됨을 확인하였으며, AQI 고농도 예측 성능의 경우 20.62%의 성능 향상이 나타났음을 확인하였다.
본 연구에서는 국가태풍센터에서 운영하는 북서태평양 태풍 진로 계절예측모델의 6월부터 10월까지의 고정된 예측시점을 현업 예보자가 목적에 따라 3개월 단위로 그 예측기간을 조정할 수 있도록 개선하였다. 여름철과 가을철 태풍 전망을 발표하는 기상청 장기예보 일정에 부합해 예측결과를 산출하기 위해 계절별로 나누어 북서태평양의 대표적 태풍 진로 유형을 새로 분류하고 각 유형별 대규모 순환장과의 상관성을 분석해서 예측모델을 개발하였다. 이 모델들의 성능을 평가하고 현업에서의 활용 가능성을 확인하기 위해 교차타당화 방법을 이용해 1982년부터 2010년까지 과거기간 동안의 예측성능을 검증하였다. 태풍 진로 밀도의 예측에 있어 관측과 모델 값의 상관계수는 여름철에 0.70, 가을철에 0.55 정도를 보였으며, 이는 예측치가 관측에서 나타난 변동성의 99% 유의수준에서 모의되는 것으로 나타났다. 두 계절 모두 기후적인 관점에서 우수한 예측성능을 보였고, 또한 기존에 개발되었던 6월부터 10월까지 기간을 대상으로 하는 모델의 성능과 비슷한 수준인 것으로 나타났다. 이러한 예측 대상기간의 수정은 사용자가 본 모델의 초기 입력자료로 사용되는 네임리스트 입력 파라미터를 조정해 쉽게 조절할 수 있다. 또한 본 모델 예측 결과에 한반도 비상구역의 결과를 집중해서 산출하는 후처리 모듈을 추가하여 현업 예보에서 신속하게 모델을 구동하고 정확한 한반도 태풍활동 예측결과를 산출할 수 있도록 하였다. 비록 가을철 한반도 비상구역 태풍활동의 피크 해 모의에 한계성이 일부 나타났으나 향후 새로운 예측인자 도입 및 최적화, 다른 회귀분석 방법 시험 등을 통해 극복할 수 있을 것이다. 이 연구를 통해 개발된 3개월 단위 예측 모듈, 유저 친화적 인터페이스, 그리고 후처리 스크립트 추가를 통한 한반도 지역 예측기능들은 기상청 국가태풍센터의 태풍 장기 예보 업무에 큰 도움이 될 것으로 기대된다.
해양파랑 예측에 있어 단일 수치모델의 불확실성을 보완하기 위하여 앙상블 기법을 적용한 지역 파랑예측시스템을 구축하였다. 기상청 전지구 대기 수치모델의 확률예측시스템에서 생산되는 24개 앙상블 해상풍을 입력자료로 이용, 87시간까지 파랑 예측자료를 생산하였으며, 기상청 계류부이 관측자료와 다양한 통계방법을 적용하여 검증을 수행하였다. 2일예측 이후의 앙상블 예측평균의 평균제곱근오차(RMSE)는 단일모델예측에 비하여 향상된 결과를 보였으며, 특히 3일예측의 경우 단일모델예측 대비 RMSE가 약 15% 정도 향상되었다. 이것은 앙상블 기법이 수치모델의 불확실성을 감소시켜 예측정확도 향상에 크게 기여한 것으로 보인다. ROC(Relative Operating Characteristic) 분석결과, 전체 예측시간에 대하여 ROC 영역이 모두 0.9 이상을 보여 확률예측 성능이 뛰어남을 보였으며, 앙상블 파랑예측 결과가 해상 확률예보에 유용하게 활용될 수 있을 것으로 판단된다.
최근 들어 늘어나고 있는 도시기상에 대한 미래수요 활용 방안을 위해 적합한 관측과 모델 분야의 고려요소와 기획연구 방향에 대해서 관측과 모델, 공간정보 활용 방안에 대해서 확인하였다. 도시기상 관측의 높은 공간해상도 요구사항을 기존 종관기상 관측망을 통해서 만족하기가 어려우며, 사용하고 있는 기존 측기의 유지 관리에 대해서 어려움이 높을 것으로 예상되기 때문에 기존측기보다 소형화된 간이 측정기를 통해 공간해상도를 보완함과 동시에 간이측기의 장기 검보정을 위한 도시규모별 유, 무인의 검보정 시스템이 필요할 것으로 보인다. 또한 UAM과 같은 차세대 교통체계의 실용화 등의 운용방안에 맞춘 기상정보 지원을 위해서 영공을 포함한 도시 지역 예보가 필요할 것으로 보인다. 이를 위해 복잡한 도시의 지면 효과를 반영하는 빌딩 규모 모델의 개발이 필요하며, 이에 대해서 중규모모델과 LES의 결합이 된 다중스케일 모델 개발 과 개선이 필요할 것으로 보인다. 추가적으로 이러한 다중스케일 모델의 연산속도 향상과 성능 개선을 위해서 GPU 등을 이용하여 모델 계산속도를 높이는 노력이 필요할 것으로 예상된다. 이러한 관측과 모델의 정보를 공간정보로 활용하기 위한 방안은 최종적으로 소규모 지역의 고해상도 실시간 기상정보를 제공하여 기상자원정보의 시너지 향상과 도시생활의 시너지 효과를 이루어낼 수 있는 정보 활용이 될 수 있을 것으로 예상된다. 스마트시티에 대한 기상자원의 활용과 융합에 대해서 국내 스마트시티 계획 지역인 부산과 세종의 현재 구축된 자료를 이용하여 그 융합을 사례 적용하였다. 특히 교통에 영향을 많이 줄 것으로 보이는 안개에 대해서 실제 과거 발생일수의 분석을 통해 스마트시티 지역 내에서 발생할 수 있는 재난 상황을 판단하고, 지역별 지형 및 기상 특성을 고려하여 관측과 예보에 필수적인 기상 인자를 최적화하고, 도시계획 과정에서 관측소의 최적입지를 선정하여 기존 도시인프라와의 융합 활용을 통해 도시기상자료를 고해상도로 구축하는 방안이 필요할 것으로 보인다.
현대에 들어서면서 대기오염 물질이 심각하게 국민의 건강을 위협하는 단계에 이르렀기 때문에 이에 대한 예보의 중요성은 점점 높아지고 있다. 대기질을 예보하는데 있어서 예보 모델에 입력되는 초기장은 예보의 정확성에 영향을 미치는 요소이기 때문에 신뢰도 높은 초기장을 생성하는 것이 매우 중요하며, 이때 필요한 기법 중 하나가 자료동화이다. 자료동화는 대상 지역이 넓어지고, 관측소의 수가 증가될수록 더 많은 연산이 필요하기 때문에 그 수행시간이 길어진다. 때문에 예보 규모가 커질수록 기존의 순차처리 방식으로는 빠른 처리속도를 요구하는 현업에 적용하기 어렵다. 이에 본 논문에서는 자료동화 기법 중의 하나인 크레스만 방법을 CUDA를 이용하여 실시간으로 처리할 수 있는 방법을 제안하였다. 그 결과, 제안한 CUDA를 이용한 병렬처리 방법이 최소 35배 이상 속도가 향상되었다.
최근 2014년 마른장마의 영향으로 중부 지방에 가뭄이 발생하였으며, 장마철 강수부족은 2015년까지 영향을 미친바 있다. 이로 인해 소양강 댐은 역대 최저수위를 기록하였으며, 일부 지역에서는 제한급수, 농업용수 부족 등의 피해가 발생하였다. 일반적으로 가뭄은 발생순서에 따라 기상학적, 농업적, 수문학적 가뭄 등으로 분류하고 있다 (Wilhite and Grantz, 1985). 기상학적 가뭄은 농업 및 수문학적 가뭄에 영향을 미치는 가뭄의 시작 단계를 의미하며, 가뭄을 판단하는데 있어 중요한 요소라 할 수 있다. 기상학적 가뭄을 정량적으로 판단하기 위해 SPI, PDSI, PN 등이 활용되고 있으며, 특히 강수량 기반의 SPI는 계산과정이 쉽고, 다양한 지속시간(3, 6, 9, 12개월 등)에 따라 가뭄을 객관적으로 판단할 수 있어 가장 활발하게 이용되고 있다(Mckee et al., 1993). 최근 기상청은 대기와 해양-해빙 모델을 접합한 GloSea5의 장기예보자료를 활용하여 월 내지 계절 가뭄전망을 위한 기상학적 가뭄지수를 현업에 활용하고 있다. 다만 국내에서는 주로 단기가뭄(1~3개월)이 빈번하게 발생함에 따라 짧은 예보선행시간을 갖는 가뭄전망에 대한 평가에 집중되어 왔다. 2014, 15년에는 이례적으로 2년 연속 가뭄이 지속된바 있으며, 장기가뭄(3개월 이상)에 대한 전망정보의 필요성이 증가하고 있다. 본 연구에서는 장기예보자료 기반의 기상학적 가뭄전망정보를 산정하고, 2015년 가뭄을 대상으로 활용성을 평가하였다. 이를 위해 ASOS 59개 지점의 관측강수량, GloSea5의 미래예측(Foreacst) 및 과거재현(Hindcast) 자료를 활용하였으며, 다양한 지속시간(3, 6, 9, 12개월)에 대한 SPI를 산정하였다. 또한 예보선행시간(1~6개월)에 따른 SPI와 관측자료 기반의 SPI 간의 통계적 분석(상관계수, 평균제곱근오차)을 수행하여 전망정보의 정확도를 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.