• Title/Summary/Keyword: 지역구분

Search Result 4,328, Processing Time 0.038 seconds

Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea (Self-organizing map을 이용한 강우 지역빈도해석의 지역구분 및 적용성 검토)

  • Ahn, Hyunjun;Shin, Ju-Young;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.383-393
    • /
    • 2018
  • The regional frequency analysis is the method which uses not only sample of target station but also sample of neighborhood stations in which are classified as hydrological homogeneous regions. Consequently, identification of homogeneous regions is a very important process in regional frequency analysis. In this study, homogeneous regions for regional frequency analysis of precipitation were identified by the self-organizing map (SOM) which is one of the artificial neural network. Geographical information and hourly rainfall data set were used in order to perform the SOM. Quantization error and topographic error were computed for identifying the optimal SOM map. As a result, the SOM model organized by $7{\times}6$ array with 42 nodes was selected and the selected stations were classified into 6 clusters for rainfall regional frequency analysis. According to results of the heterogeneity measure, all 6 clusters were identified as homogeneous regions and showed more homogeneous regions compared with the result of previous study.

Regional Frequency Analysis using the Artificial Neural Network Method - the Han River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 한강유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.300-300
    • /
    • 2016
  • 지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.

  • PDF

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

Investigation of Heterogeneity Measure for Nonstationary Regional Frequency Analysis (비정상성 지역빈도해석을 위한 지역구분에 따른 이질성 척도 검토)

  • Ahn, Hyunjun;Shin, Ju-Young;Jung, Tae-Ho;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.340-340
    • /
    • 2018
  • 전 세계적으로 기후변화로 인해 나타나는 이상기후의 영향을 고려하기 위해서 수문빈도해석분야에서는 비정상성 빈도해석에 관한 연구가 활발히 진행 중이다. 자료의 비정상성을 고려하여 빈도해석을 수행하는 방법은 다양하게 연구되어오고 있는데, 그중 시간에 따른 자료의 변화를 고려할 수 있도록 기존 모형의 매개변수에 시간을 고려할 수 있는 변수를 더하여 모형을 구축하는 기법이 비정상성 빈도해석기법으로 널리 활용되고 있다. 한편, 이러한 비정상성 가정에 관련한 연구들은 주로 지점빈도해석 기법을 중심으로 개발되어왔을 뿐, 아직 지역빈도해석기법을 대상으로 시도된 비정상성 연구는 미비한 실정이다. 지역빈도해석은 수문학적 동질지역이라는 가정을 바탕으로 표본의 확장을 통해 지점빈도해석보다 비교적 안정적인 빈도해석을 수행할 수 있는 기법으로 널리 알려져 있다. 따라서 지역빈도해석에서 수문학적 동질지역의 구분은 지역빈도해석 절차 중 가장 중요한 절차라고 할 수 있다. 이러한 수문학적 동질지역 구분을 위해서는 지점별로 가지고 있는 위치 정보나 수문 자료의 통계값과 같은 해당 지점을 대표할 수 있는 인자들이 필요하다. 본 연구에서는 모의실험을 통해 경향성이 나타나는 가상의 지점 자료를 생성한 뒤, 지역구분을 통해 자료의 비정상성이 나타나는 지역의 지역구분 결과를 살펴보고 이질성 척도(heterogenity measure)를 산정하였다. 이를 바탕으로 비정상성 지역빈도해석에서 이질성 척도의 적용성을 검토하고자 한다. 본 연구의 결과는 추후 기후변화의 영향이 나타나는 수문학적 동질 및 비 동질지역의 분석 및 비정상성 지역빈도해석을 위한 기초자료로 활용될 것으로 기대된다.

  • PDF

The Analysis of Optimal Cluster Number of Precipitation Region with Dunn Index (Dunn 지수를 이용한 최적 강수지역 군집수 분석)

  • Um, Myoung-Jin;Jeong, Chang-Sam;Nam, Woo-Sung;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.87-91
    • /
    • 2011
  • 강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.

  • PDF

Evaluation of analog based downscaling considering Asian climate zone (아시아 기후대를 고려한 아날로그 공간상세화 기법 평가)

  • Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.93-93
    • /
    • 2021
  • 아날로그 기법은 대표적인 일기도분류 기반의 공간상세화 기법으로써 과거 기상 현상이 미래 재현된다는 가정 하에 공간상세화를 수행하는 방법이다. 대규모 공간범위에 대한 아날로그 기법 적용 시에 지역 구분을 기반으로 적용하는 것이 바람직하다고 알려져 있으며, 기상 변수 간의 선형 상관성을 기반으로 지역구분을 수행하는 기법이 제안된 바 있다. 다만 기존 방법은 아날로그 시점을 찾는 범위가 지나치게 넓어지거나, 공간적으로 불연속적인 구간이 발생할 수 있다. 따라서 지역 간 기후변동성이 크고 도서가 다수 위치한 아시아 지역에서는 부적합한 방법이다. 본 연구에서는 아시아 지역에 대해 지역별 기후특성을 반영할 수 있는 아날로그 공간상세화 기법(BCIA)을 제안하고 평가하고자 한다. 본 연구에서는 쾨펜 기후구분과 ETCCDI 지수를 활용하여 기후특성을 고려한 지역구분을 수행하였으며, 이를 기반으로 아날로그 상세화를 수행하고 평가하였다. 평가결과 BCIA는 기존 아날로그 기법에 비해 기후 특성을 재현하는데 효과적인 것으로 나타났으며, 특히 극치 계열의 기후 지수, 강수일수와 관련된 기후 지수의 재현성이 우수한 것을 확인하였다. 본 연구에서는 기존 일부 지역에서만 시도되었던 지역별 아날로그 적용 방법론을 아시아 지역에 맞게 새롭게 제안하였고 이에 대한 활용성을 검증하였다는 점에서 가치가 있다.

  • PDF

Regionalization using cluster probability model and copula based drought frequency analysis (클러스터 확률 모형에 의한 지역화와 코풀라에 의한 가뭄빈도분석)

  • Azam, Muhammad;Choi, Hyun Su;Kim, Hyeong San;Hwang, Ju Ha;Maeng, Seungjin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.46-46
    • /
    • 2017
  • 지역가뭄빈도분석의 분위산정에 대한 신뢰성은 수문학적으로 균일한 지역으로 구분하기 위해 사용된 장기간의 과거 자료와 분석절차에 의해 결정된다. 그러나 극심한 가뭄은 매우 드물게 발생하며 신뢰 할 수 있는 지역빈도분석을 위한 지속기간이 충분치 않는 경우가 많이 발생한다. 이 외에도 우리나라의 복잡한 지형적 및 기후적 특징은 동질한 지역으로 구분하기 위한 통계적인 처리방법이 필요하였다. 본 연구에서 적용한 지역빈도분석은 여러 지역의 다양한 변수인 수문기상 특성을 분석하여 동질한 지역을 확인하고, 주요 가뭄변수(지속 시간 및 심각도)를 통합 적용하여 각각의 동질한 지역 분위를 추정함으로써 동질한 지역을 구분하는 해결책을 제시하였다. 본 연구에서는 가우시안 혼합 모형(Gaussian Mixture Model)을 기반으로 기반 군집분석 방법을 적용하여 최적의 동질한 지역을 구분하고 그 결과를 우도비검정 및 다른 유효성 검사 지수를 이용해서 확인하였다. 가우시안 혼합 모델에서 산정했던 매개변수를 방향저감 공간으로 표현하기 위해서 가우시안 혼합 모델방향 저감(GMMDR)방법을 적용하였다. 이 변수는 가뭄빈도분석을 위해 다양한 분포와 코풀라(copula) 적합도를 이용하여 추정 비교하였다. 그 결과 우리나라를 4개의 동질한 지역으로 나누게 되었다. 가우시안과 Frank copula를 이용한 Pearson type III(PE3) 분포는 우리나라의 가뭄 기간과 심각도의 공동 분포를 추정하는데 적합한 것으로 나타났다.

  • PDF

The study for grading the area damaged by forest fire using LiDAR and digital aerial photograph (LiDAR 및 디지털항공사진을 이용한 산불 피해지의 등급화에 관한 연구)

  • Kwak, Doo-Ahn
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • LiDAR는 일반 항공사진 및 위성영상과는 달리 사물의 높이를 측정할 수 있어 산림의 3차원 모델링을 수행할 수 있다. 본 연구에서는 이러한 LiDAR의 특성을 이용하여 산불이 발생한 강원도 양양지역 산림의 물리적 피해를 분석하였으며, 디지털 항공사진으로부터 Normalized Difference Vegetation Index (NDVI)를 추출하여 산림의 생물학적 피해를 분석하였다. 산림의 물리적 피해는 임관의 피해정도에 따라 지표면에서 반사되는 Point Data의 개수의 비율로서 추정을 하였다. 피해정도의 고저(高低)를 구분하는 기준은 통계적 방법 (Jenk's Natural Break) 으로부터 추정된 0.3594을 사용하였으며, 지표면 반사비율이 0.3594 이상인 경우 물리적 피해정도를 고(高, Serious Physical Damage; SPD), 지표면 반사비율이 0.3594 이하인 경우 물리적 피해정도를 저(低, Light Physical Damage; LPD)로 나타내었다. 또한 생물학적 피해는 일반적인 NDVI 값의 범위(-1

  • PDF

A Study of Korean Geographic Area Classification Systems (한국 지리구분 분류체계에 관한 연구)

  • 곽철완
    • Journal of Korean Library and Information Science Society
    • /
    • v.35 no.2
    • /
    • pp.135-154
    • /
    • 2004
  • This study was investigated to the geographical categories and arrangement of library classifications and public organizations in ender to understand the geographical category comprehension and canon from the north-west to south-east in Korean library classification and then to develop a Korean geographical classification system Research method was the examination of different type of library classification (DDC, NDC, LCC) and geographical categorizations of the public organizations. The results show that there was not a principle of categorization and arrangement for geographical information. This study proposes to the three hierarchical structures and radial category arrangement from center-area to side area for developing Km geographical classification.

  • PDF

Regional Rainfall Frequency Analysis by Multivariate Techniques (다변량 분석 기법을 활용한 강우 지역빈도해석)

  • Nam, Woo-Sung;Kim, Tae-Soon;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.517-525
    • /
    • 2008
  • Regional rainfall quantile depends on the identification of hydrologically homogeneous regions. Various variables relevant to precipitation can be used to form regions. Since the type and number of variables may lead to improve the efficiency of partitioning, it is important to select those precipitation related variables, which represent most of the information from all candidate variables. Multivariate analysis techniques can be used for this purpose. Procrustes analysis which can decrease the dimension of variables based on their correlations, are applied in this study. 42 rainfall related variables are decreased into 21 ones by Procrustes analysis. Factor analysis is applied to those selected variables and then 5 factors are extracted. Fuzzy-c means technique classifies 68 stations into 6 regions. As a result, the GEV distributions are fitted to 6 regions while the lognormal and generalized logistic distributions are fitted to 5 regions. For the comparison purpose with previous results, rainfall quantiles based on generalized logistic distribution are estimated by at-site frequency analysis, index flood method, and regional shape estimation method.