• Title/Summary/Keyword: 지식 기반 공학 시스템

Search Result 273, Processing Time 0.026 seconds

Multi-Session Open Domain Knowledge-based dialog collection Tool (멀티-세션 오픈 도메인 지식기반 대화 수집 툴)

  • Tae-Yong Kim;San Kim;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.491-496
    • /
    • 2022
  • 최근 멀티-세션 데이터로 장기간 페르소나와 대화 일관성을 유지하며 인터넷에서 대화와 관련된 지식을 활용하는 대화모델 연구가 활발히 진행되고 있다. 하지만 이를 위한 한국어 멀티-세션 오픈 도메인 지식 기반 대화 데이터는 공개되지 않아 한국어 대화모델 연구에 어려움이 있다. 따라서 본 논문에서는 한국어 멀티-세션 오픈 도메인 지식 기반 데이터의 필요성을 시사하고, 데이터 수집을 위한 툴을 제안한다. 제안하는 수집 툴은 양질의 데이터 수집을 위해 작업자들이 사용하기 편하도록 UI/UX를 구성하였으며, 대화 생성 시 텍스트뿐만 아니라 정보가 밀집된 테이블도 대화에 활용할 지식으로 참조할 수 있도록 구현하였다. 제안하는 수집 툴은 웹 랜덤채팅 시스템에 기반을 두어 작업자가 여러 다른 작업자와 같은 확률로 매칭되게 구현되었으며, 일정 확률로 기존 대화로부터 대화를 시작하도록 함으로써 멀티-세션 대화 수집이 가능하도록 하였다.

  • PDF

Workbench for building Task based Dialog System (태스크 기반 대화 시스템 구축 도구)

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.209-211
    • /
    • 2012
  • 본 논문의 대화시스템 구축도구는 태스크 기반 대화 시스템을 구축하는데 필요한 대화 시나리오 지식과 이를 처리하는 태스크 그래프, 슬롯 체계, 대화 라이브러리 등을 생성하고 관리할 수 있는 웹기반 대화 시스템 구축 도구이다. 이 도구는 태스크 그래프를 시각적으로 대화 모델 설계자에게 표시하고, 대화 모델 설계자는 시각적으로 표시된 태스크 그래프를 보며 태스크의 흐름을 한눈에 파악하고 대화 시스템의 시나리오 흐름을 생성하고 편집할 수 있도록 한 것이 특징이다. 또한 대화 모델 설계자와 시나리오 태깅 작업자들 모두는 자신이 구축한 지식이나 대화 태스크를 시스템에 직접 반영하고 실시간으로 대화 시스템에 적용해 봄으로써 대화 시스템의 이해를 높이고 고품질의 대화 시스템을 구축할 수 있다.

  • PDF

An Improved Knowledge Processing in Life Cycle of Digital Museum System (디지털 박물관 시스템의 생명주기에 있어서 향상된 지식 처리)

  • Hyun, Woo-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.385-389
    • /
    • 2007
  • 전통적인 디지털 박물관 시스템은 전시를 조직화하는 단순한 기능에 촛점을 두고 있으며 설계 패턴은 전시 항목들에 기반을 두고 있다. 이것의 생명주기는 직선적이고 피드백과 재사용성이 부족하여 생명 주기에서 지식 처리를 다루는 것에 대해서는 관심을 가지지 않고 있다. 하지만 현대 디지털 박물관은 급진적으로 증가하는 정보를 다루어야 하고, 디지털 감상, E-학습과 관련 연구를 위해 통합된 기능을 제공해야 한다. 이러한 요구사항들은 디지털 박물관에서 객체들이 고수준으로 추상화되고, 생명주기도 반복적이며 재사용이 가능하도록 요구하고 있다. 그러므로 체계적으로 통합된 지식처리 과정들이 디지털 박물관에서 정보시스템을 다루기 위해서 절대적으로 필요하게 되었다. 본 논문에서는 현대 디지털 박물관 시스템에서 새로운 생명주기를 제안한다. 지식 흐름(knowledge flow)은 디지털 박물관 생명주기에 걸쳐서 모든 정보 흐름으로부터 고수준으로 추상화된 객체이다. 지식 흐름을 따라가게 되면 이 특별한 생명주기는 정의된 시금석으로서 다차원의 분수 모델(Fountain Model)과 비슷하며, 이 생명주기에서 지식처리 과정은 각 차원에서 다른 강조점을 지닌 계층으로 잘 나누어진다. 또한 분산된 지식 처리 절차를 체계적이고 재사용할 수 있도록 통합하기 위한 지식 기반 소프트웨어 공학 접근방법을 제공한다.

  • PDF

Development of a Dialogue System Model for Korean Restaurant Reservation with End-to-End Learning Method Combining Domain Specific Knowledge (도메인 특정 지식을 결합한 End-to-End Learning 방식의 한국어 식당 예약 대화 시스템 모델 개발)

  • Lee, Dong-Yub;Kim, Gyeong-Min;Lim, Heui-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.111-115
    • /
    • 2017
  • 목적 지향적 대화 시스템(Goal-oriented dialogue system) 은 텍스트나 음성을 통해 특정한 목적을 수행 할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.

  • PDF

An Intelligent Character System Using Multi-Language Based Question Answering System (다국어 기반의 질의응답시스템을 활용한 지능형 케릭터 시스템)

  • Park, Hong-Won;Lee, Ki-Ju;Lee, Su-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.215-220
    • /
    • 2002
  • 질의응답시스템을 지능형 케릭터 시스템에 활용하기 위해서는 불특정한 주제에 대해 불특정 다수의 사용자와 대화할 수 있는 정교한 대화 모델이 필요하다. 이러한 대화 모델은 사용자의 질의문장을 인식하고 질의의도를 파악한 후 케릭터의 특정지식으로 접근하여 해당 지식을 사용자의 요구에 맞는 응답문의 형태로 생성해 내는 과정이 필수적으로 포함되어야 한다. 본 논문에서는 논의의 대상이 되는 질의응답시스템이 다국어 기반이라는 점을 고려하여 질의응답시스템을 지능형 케릭터에 활용하는 과정에서 케릭터의 지식구조 설계는 물론이고 질의문장 분석과 응답 문 생성의 방법론에 있어서도 한국어, 영어, 일본어, 중국어 각각의 언어적 특질을 반영함으로써 형태적, 통사적 차이로 인한 애로점을 최소화할 수 있도록 하였다.

  • PDF

Ko-ATOMIC 2.0: Constructing Commonsense Knowledge Graph in Korean (Ko-ATOMIC 2.0: 한국어 상식 지식 그래프 구축)

  • Jaewook Lee;Jaehyung Seo;Dahyun Jung;Chanjun Park;Imatitikua Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.319-323
    • /
    • 2023
  • 일반 상식 기반의 지식 그래프는 대규모 코퍼스에 포함되어 있는 일반 상식을 수집하고 구조화하는 지식의 표현 방법이다. 일반 상식 기반의 지식 그래프는 코퍼스 내에 포함되어 있는 다양한 일반 상식의 형태와 관계를 모델링하며, 주로 질의응답 시스템, 상식 추론 등의 자연어처리 하위 작업에 활용할 수 있다. 가장 잘 알려진 일반 상식 기반의 지식 그래프로는 ConceptNet [1], ATOMIC [2]이 있다. 하지만 한국어 기반의 일반 상식 기반의 지식 그래프에 대한 연구가 존재했지만, 자연어처리 태스크에 활용하기에는 충분하지 않다. 본 연구에서는 대규모 언어 모델과 프롬프트의 활용을 통해 한국어 일반 상식 기반의 지식 그래프를 효과적으로 구축하는 방법론을 제시한다. 또한, 제안하는 방법론으로 구축한 지식 그래프와 기존의 한국어 상식 그래프의 품질을 양적, 질적으로 검증한다.

  • PDF

Synchronous Mechanism for Ensuring Data Consistency in Mobile based Reservation System (모바일 예약 시스템에서 데이터 일관성을 위한 동기화 메커니즘)

  • Jeong, Youngsub;Kim, Kangseok;Kim, Jai-hoon;Hong, Manpyo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.156-159
    • /
    • 2012
  • 최근 모바일 기기의 발달로 모바일 환경에서도 예약 서비스를 이용할 수 있다. 모바일 예약 시스템은 서버와 사용자간에 예약 정보 데이터를 일관성 있게 유지하여 사용자에게 실시간 예약 현황을 제공해야 한다. 현재 모바일 예약 시스템은 어플리케이션을 기반으로 서비스를 제공하고 있고, 웹 서비스와 같이 요청 대 응답 방식으로만 데이터를 처리하기 때문에 사용자가 요청하지 않으면 변화된 데이터를 알 수 없다는 문제점이 있다. 이는 데이터 일관성의 문제로 연결되어 사용자에게 실시간으로 예약 현황을 제공하지 못하게 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 모바일 예약 시스템에서 스트리밍 방식을 개선한 Push를 통해 데이터 일관성을 유지하는 동기화 메커니즘을 제안한다.

Y-HisOnto: A History Ontology Model for Q&A System (Y-HisOnto: Q&A 시스템에서의 활용을 위한 역사 온톨로지 모형)

  • Lee, In Keun;Jung, Jason J.;Hwang, Dosam
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.156-159
    • /
    • 2013
  • 본 논문에서는 시간 개념이 포함된 역사적 지식을 표현할 수 있는 사건 온톨로지(event ontology) 기반의 역사 온톨로지 모형인 Y-HisOnto 를 제안한다. 제안한 역사 온톨로지 모형은 기존의 온톨로지에서 사용되는 이진 관계(binary-relationship)로 표현된 단편적 지식들을 조합하여 다진 관계(n-ary relationship)를 이용하여 역사적 사건 관련 지식을 표현한다. 제안한 온톨로지 모형에 기반하여 사건 중심의 지식을 온톨로지로 구축하고, 사건 관련 질의에 대해 온톨로지 논리 검색 실험을 수행함으로써 제안한 온톨로지 모형이 Q&A 시스템에서 효과적으로 활용될 수 있음을 확인한다.

  • PDF

Question Answering System that Combines Deep Learning and Information Retrieval (딥러닝과 정보검색을 결합한 질의응답 시스템)

  • Lee, Hyeon-gu;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.134-138
    • /
    • 2016
  • 정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.

  • PDF