시간 지식 그래프 임베딩 방법들은 주어진 시간 지식 그래프에 존재하는 개체 및 관계를 저차원의 임베딩 벡터로 표현하는 것을 목표로 한다. 그러나, 기존 방법들은 개체들의 임베딩 벡터에 그들의 시간에 따라 변화하는 특성을 반영하는 데에만 집중함에 따라, 그들의 영구적인 특성을 무시한다는 한계를 갖는다. 본 논문에서, 우리는 실세계 데이터 집합들을 이용한 실험을 통해, 시간 지식 그래프 임베딩에서 개체들의 영구적인 특성을 고려하는 것이 중요하다는 점을 논의한다.
A chat system is a computer program that understands user's miscellaneous utterances and generates appropriate responses. Sometimes a chat system needs to answer users' simple information-seeking questions. However, previous generative chat systems do not consider how to embed knowledge entities (i.e., subjects and objects in triple knowledge), essential elements for question-answering. The previous chat models have a disadvantage that they generate same responses although knowledge entities in users' utterances are changed. To alleviate this problem, we propose a knowledge entity embedding method for improving question-answering accuracies of a generative chat system. The proposed method uses a Siamese recurrent neural network for embedding knowledge entities and their synonyms. For experiments, we implemented a sequence-to-sequence model in which subjects and predicates are encoded and objects are decoded. The proposed embedding method showed 12.48% higher accuracies than the conventional embedding method based on a convolutional neural network.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.465-469
/
2018
본 논문에서는 지식베이스 완성을 위한 새로운 모델, KBCNN을 소개한다. KBCNN 모델은 CNN을 기반으로 지식베이스의 개체들과 관계들 사이의 연관성을 포착한다. KBCNN에서 각 트리플 <주어 개체, 관계, 목적어 개체>는 3개의 열을 가진 행렬로 표현되며, 각각의 열은 트리플의 각 원소를 표현하는 임베딩 벡터다. 트리플을 나타내는 행렬은 여러 개의 필터를 가지고 있는 컨볼루션 레이어를 통과한 뒤, 하나의 특성 벡터로 합쳐진다. 이 특성 벡터를 가중치 행렬과 내적 하여 최종적으로 해당 트리플의 신뢰도를 출력하게 된다. 이 신뢰도를 바탕으로 트리플의 진실 여부를 가려낼 수 있다. 지식베이스 완성 연구에서 가장 많이 사용되는 데이터셋인 FB15k-237을 기반으로 한 실험을 통해 KBCNN 모델이 기존 임베딩 모델들보다 뛰어난 성능을 보이는 것을 확인하였다.
온라인 뉴스 플랫폼의 발전은 에코 챔버(echo chamber) 효과와 정치적 양극화를 심화시키며, 이를 완화하기 위한 선행 연구로 뉴스 기사의 정치적 성향을 판단하는 연구가 필요하다. 기존 연구는 외부 지식 그래프를 활용하여 뉴스 기사의 텍스트 정보를 더욱 풍부하게 표현한다. 그러나, 외부 지식을 임베딩하는 지식 그래프 임베딩(knowledge graph embedding, KGE) 방법은 다양하며, 각 KGE 방법이 정치적 성향 예측 정확도에 미치는 효과에 대해서 충분히 연구되지 않았다. 본 논문에서는 정치적 성향 예측에 외부 지식의 활용을 최대화하기 위한 다양한 KGE 방법들의 효과를 분석한다. 실험 결과, 외부 지식 그래프 내의 개체들 간 복잡한 관계를 간단하고 정확하게 표현 가능한 ModE 방법을 활용하는 것이 정치적 성향 예측에 가장 효과적이라는 것을 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.26
no.11
/
pp.33-40
/
2021
Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.163-166
/
2018
개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.247-251
/
2018
상호참조해결은 자연언어 문서 내에서 등장하는 명사구 언급(mention)과 이에 선행하는 명사구 언급을 찾아 같은 개체인지 정의하는 문제이다. 특히, 지식베이스 확장에 있어 상호참조해결은 언급 후보에 대해 선행하는 개체의 언급이 있는지 판단해 지식트리플 획득에 도움을 준다. 영어권 상호참조해결에서는 F1 score 73%를 웃도는 좋은 성능을 내고 있으나, 평균 정밀도가 80%로 지식트리플 추출에 적용하기에는 무리가 있다. 따라서 본 논문에서는 한국어 문서에 대해 영어권 상호참조해결 모델에서 사용되었던 최신 모델인 Bi-LSTM 기반의 딥 러닝 기술을 구현하고 이에 더해 언급 후보 목록을 만들어 개체명 유형과 경계를 적용하였으며 품사형태를 붙인 토큰을 사용하였다. 실험 결과, 문자 임베딩(Character Embedding) 값을 사용한 경우 CoNLL F1-Score 63.25%를 기록하였고, 85.67%의 정밀도를 보였으며, 같은 모델에 문자 임베딩을 사용하지 않은 경우 CoNLL F1-Score 67.92%와 평균 정밀도 77.71%를 보였다.
최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.321-323
/
2016
최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.
최근 4차 산업 혁명시대에 이르러 다양한 기술이 급속도로 발전함에 따라 지적 재산권 확보가 중요하게 되었다. 따라서 대표적인 지식재산권의 하나인 특허의 발명 또한 급증하고 있다. 본 논문에서는 특허 데이터에 포함된 기술명 식별을 위해 딥러닝 기반 기술명 분류 방법을 제안한다. 그 결과 특정 분야에서 사용되는 전문 용어에 대한 개체명 식별이 가능함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.