• 제목/요약/키워드: 지식베이스 증강

검색결과 5건 처리시간 0.021초

IoE 환경에서 공장에너지 관리를 위한 빅시맨틱 시스템 설계 (Design of Big Semantic System for Factory Energy Management in IoE environments)

  • 권순현;이좌형;김선혁;이상금;신영미;도윤미;허태욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.37-39
    • /
    • 2022
  • 기존 IoE 환경에서 수집데이터는 특정 서비스를 위한 도메인 지식과 연계되어 서비스를 제공한다. 하지만 수집되는 데이터의 유형이 다양하고, 정적인 지식베이스가 상황에 따라 동적으로 변화하는 IoE 환경에서는 기존의 지식베이스 시스템을 통하여 원활한 서비스를 제공할 수 없었다. 따라서, 본 논문에서는 IoE 환경에서 발생하는 대용량/실시간성 데이터를 시맨틱으로 처리하여 공통 도메인 지식베이스와 연계하고 기존의 지식베이스 추론 방법과 기계학습 기반 지식 임베딩 기법을 통하여 지식 증강을 유기적으로 진행하는 빅시맨틱 시스템을 제시한다. 제시한 시스템은 IoE 환경의 멀티모달(정형, 비정형) 데이터를 수집하고 반자동적으로 시맨틱 변환을 수행하여 도메인 지식베이스에 저장하고, 시맨틱 추론을 통해 지식베이스를 증강 시키며 증강된 지식베이스를 포함한 전체 지식베이스를 정형 및 반정형 사용자 쿼리를 통해 지식정보를 사용자에게 제공한다. 또한, 기계학습 기반 지식 임베딩 기법을 통해 학습·예측을 함으로써, 기존의 지식베이스를 증강하는 기능을 수행한다. 본 논문에서 제시한 시스템은 공장내의 에너지 정보를 수집하여 공정 및 설비 상태 및 운영정보를 바탕으로 실시간 제어를 통한 에너지 절감 시스템인 공장 에너지 관리 시스템의 기반 기술로 구현될 예정이다.

한국어 디비피디아의 자동 스키마 진화를 위한 방법 (A method of Automatic Schema Evolution on DBpedia Korea)

  • 김선동;강민서;이재길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.741-744
    • /
    • 2014
  • 디비피디아 온톨로지는 위키피디아에서 구조화된 데이터를 추출한 지식 베이스이다. 이러한 지식 베이스의 자동 증강은 웹을 구조화하는 속도를 증가시키는데 큰기여를 할 수 있다. 본 연구에서는 한국어 디비피디아를 기반으로 새로운 트리플을 입력받아 기존의 지식 베이스를 자동 증강시키는 시스템을 소개한다. 스키마를 자동 증강하는 두 가지 알고리즘은 최하위 레벨인 인스턴스가 지닌 프로퍼티, 즉 rdf-triple 단위에서 진행되었다. 알고리즘을 사용한 결과 첫째, 확률적 격상 방법을 통해 단계별로 입력받는 인스턴스와 하위 클래스의 프로퍼티를 이용하여 상위 클래스의 스키마가 정교해졌다. 둘째, 이를 바탕으로 타입 분류가 되어 있지 않았던 인스턴스들이 가장 가까운 타입에 자동 분류되었다. 지식 베이스가 정교해지면서 재분류된 인스턴스와 새로운 트리플셋을 바탕으로 두 가지 알고리즘은 반복적으로 작동하며, 한국어 디비피디아 지식 베이스의 자동 증강을 이루었다.

새로운 개체 발견과 반복적 개체 연결에 대한 방법 연구 (Study of New Entity Discovery and Iterative Entity Linking)

  • 이민호;남상하;김동환;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.71-77
    • /
    • 2019
  • 개체 연결은 자연어 문장 안에서 나타난 개체를 지식베이스의 URI에 연결하는 작업이다. 그러나 지금까지는 새로운 개체를 지식베이스에 등록하여 지식베이스를 확장하려는 시도가 아직 없었다. 본 논문에서는 지식베이스에 새로운 개체를 등록하는 방법인 "개체 발견" 과정과, 이를 평가하는 방법인 "반복적 개체 연결"에 대한 순서와 실험 방법을 정의하였다. 실험 결과를 통해 개체명을 많이 등록할수록 새로운 URI를 잘 찾아내는 장점이 있지만, 기존의 개체 연결 성능에 악영향을 미쳐 적절한 개체 검증 과정이 필요함을 보였다.

  • PDF

Design of a Question-Answering System based on RAG Model for Domestic Companies

  • Gwang-Wu Yi;Soo Kyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.81-88
    • /
    • 2024
  • 생성형 AI 시장의 급속한 성장과 국내 기업과 기관의 큰 관심에도 불구하고, 부정확한 정보제공과 정보유출의 우려가 생성형 AI 도입을 저해하는 주된 요인으로 나타났다. 이를 개선하기 위해 본 논문에서는 검색-증강 생성(Retrieval-Augmented Generation, RAG) 구조 기반의 질의응답시스템을 설계·구현하였다. 제안 방법은 한국어 문장 임베딩을 사용해 지식 데이터베이스를 구축하고, 최적화된 검색으로 질문 관련 정보를 찾아 생성형 언어 모델에게 제공된다. 또한, 이용자가 지식 데이터 베이스를 직접 관리하여 변경되는 업무 정보를 효율적으로 업데이트하도록 하고, 시스템이 폐쇄망에서 동작할 수 있도록 설계하여 기업의 기밀 정보의 유출 가능성을 낮추었다. 국내 기업 등 조직에서 생성형 AI를 도입하고 활용하고자 할 때 본 연구가 유용한 참고자료가 되길 기대한다.

문서 내 전역 관계 추출: 생략된 개체의 고려 (Global Relation Extraction for Documents: Regarding Omitted Entities)

  • 김규경;김경민;조재춘;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.47-49
    • /
    • 2018
  • 최근 존재하는 대부분의 관계 추출 모델은 언급 수준의 관계 추출 모델이다. 이들은 성능은 높지만, 문서에 존재하는 다수의 문장을 처리할 때, 문서 내에 주요 개체 및 여러 문장에 걸쳐서 표현되는 개체간의 관계를 분류하지 못한다. 이는 높은 수준의 관계를 정의하지 못함으로써 올바르게 데이터를 정형화지 못하는 중대한 문제이다. 해당 논문에서는 이러한 문제를 타파하기 위하여 여러 문장에 걸쳐서 개체간의 상호작용 관계도 파악하는 전역 수준의 관계 추출 모델을 제안한다. 제안하는 모델은 전처리 단계에서 문서를 분석하여 사전 지식베이스, 개체 연결 그리고 각 개체의 언급횟수를 파악하고 문서 내의 주요 개체들을 파악한다. 이후 언급 수준의 관계 추출을 통하여 1차적으로 단편적인 관계 추출을 실행하고, 주요개체와 관련된 관계는 외부 메모리에 샘플로 저장한다. 이후 단편적 관계들과 외부메모리를 이용하여 여러 문장에 걸쳐 표현되는 개체 간 관계를 알아낸다. 해당 논문은 이러한 모델의 구조도와 실험방법의 설계에 대하여 설명하였고, 해당 실험의 기대효과 또한 작성하였다.

  • PDF