Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.
Park, Sung-Jun;Bae, Hong-Kyun;Chae, Dong-Kyu;Kim, Sang-Wook
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.759-760
/
2020
최근 사용자, 상품, 그리고 상품의 메타 정보 사이의 관계를 표현한 지식 그래프 (knowledge graph) 가 추천 시스템 분야에서 많은 관심을 받고 있으며 활발히 이용되고 있다. 하지만 기존의 지식 그래프는 각 노드 (사용자, 상품, 메타 정보 등) 사이의 단순한 사실 관계만을 표현하고 있으며, 이는 사용자의 선호도를 정확히 파악하는 데 한계가 있다. 본 논문에서는 지식 그래프의 정보 부족 문제를 보완하기 위해 각 상품에 남겨진 텍스트 리뷰를 감정 분석 (sentiment analysis) 하고, 이를 각 노드 간의 선호도 정보로 활용하여 지식 그래프를 구축하는 방법을 제안한다.
KIPS Transactions on Software and Data Engineering
/
v.5
no.11
/
pp.549-554
/
2016
ConceptNet is a common sense knowledge base which is formed in a semantic graph whose nodes represent concepts and edges show relationships between concepts. As it is difficult to make knowledge base integrity, a knowledge base often suffers from incompleteness problem. Therefore the quality of reasoning performed over such knowledge bases is sometimes unreliable. This work presents neural tensor networks which can alleviate the problem of knowledge bases incompleteness by reasoning new assertions and adding them into ConceptNet. The neural tensor networks are trained with a collection of assertions extracted from ConceptNet. The input of the networks is two concepts, and the output is the confidence score, telling how possible the connection between two concepts is under a specified relationship. The neural tensor networks can expand the usefulness of ConceptNet by increasing the degree of nodes. The accuracy of the neural tensor networks is 87.7% on testing data set. Also the neural tensor networks can predict a new assertion which does not exist in ConceptNet with an accuracy 85.01%.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.04a
/
pp.261-270
/
2000
개념 계층(Concept Hierarchy)은 데이터베이스 분야에서 사용되는 대표적인 배경 지식(Background Knowledge)으로써, 데이터베이스에 내재되어 있는 구조적인 정보, 데이터의 분포, 영역전문가(Domain Expert)에 의해 주어지는 외부 지식 등이 반영되어 있다. 개념 계층의 특성상 부모(parent)-자식(child) 관계가 있는 두 노드가 있을 때, 한 노드의 값으로부터 다른 노드의 값을 추정할 수 있다. 이 추정된 값을 기대치라고 하고, 한 노드의 값으로부터 추정된 기대치와 실제치가 상당히 상이한 값을 보이는 노드가 있을 때, 이를 흥미롭다(interesting)라고 할 수 있다. 그러나 아직까지 개념계층상에서의 흥미로운 부분 탐색에 대한 연구가 없었으며, 흥미로움(interestingness)의 척도(measurement)에 대한 연구로서는 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등이 있다. 그러나 이런 흥미도의 척도에 관한 연구도 연관규칙에 한정되어 이루어졌으므로 개념계층상의 데이터에 적용하기 위해서는 약간의 수정 및 새로운 정의가 필요하다. 본 논문에서는 데이터의 특성에 따른 개념계층이 존재할 때, 이를 이용하여 기대치와 실제치가 상이한 흥미로운 부분을 발견하고자 하며, 이를 위하여 개념계층이 존재할 때, 이를 이용하여 기대치와 실제치가 상이한 흥미로운 부분을 발견하고자 하며, 이를 위하여 개념계층상에서의 흥미도의 척도를 제안하고 흥미로운 부분을 탐색하는 방법을 기술하고자 한다. 또한 데이터마이닝의 결과인 연관규칙을 개념계층에 적용하여 연관규칙을 통해 얻어질 수 있는 기대치를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.
개념 계층(Concept Hierarchy)은 데이터베이스 분야에서 사용되는 대표적인 배경 지식(Background Knowledge)으로써, 데이터베이스에 내재되어 있는 구조적인 정보, 데이터의 분포, 영역전문가 (Domain Expert)에 의해 주어지는 외부 지식 등이 반영되어 있다. 개념계층의 특성상 부모(parent)-자 식(child) 관계가 있는 두 노드가 있을 때, 한 노드의 값으로부터 다른 노드의 값을 추정할 수 있다 이 추정된 값을 기대치라고 하고, 한 노드의 값으로부터 추정된 기대치와 실제치가 상당히 상이한 값을 보이는 노드가 있을 때, 이를 흥미롭다(interesting)고 말할 수 있다. 그러나 아직까지 개념계층 상에서의 흥미로운 부분 탐색에 대한 연구가 없었으며, 흥미로움(interestingness)의 척도(measurement) 에 대한 연구로서는 신뢰도(confidence),리프트(lift),컨빅션(conviction)등이 있었다. 그러나 이런 흥미도 의 척도에 관한 연구도 연관규칙에 한정되어 이루어졌으므로 개념계층상의 데이터에 적용하기 위해 서는 약간의 수정 및 새로운 정의가 필요하다. 본 논문에서는 데이터의 특성에 따른 개념계층이 존재할 때, 이를 이용하여 기대치와 실제치가 상이한 흥미로운 부분을 발견하고자 하며, 이를 위하여 개념계층상에서의 흥미도의 척도를 제안하고 흥미로운 부분을 탐색하는 방법을 기술하고자 한다. 또한 데이터마이닝의 결과인 연관규칙을 개념 계층에 적용하여 연관규칙을 통해 얻어질 수 있는 기대치를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용 가능하리라 여겨진다.
KIPS Transactions on Software and Data Engineering
/
v.9
no.8
/
pp.243-250
/
2020
Knowledge graph-based question answering not only requires deep understanding of the given natural language questions, but it also needs effective reasoning to find the correct answers on a large knowledge graph. In this paper, we propose a deep neural network model for effective reasoning on a knowledge graph, which can find correct answers to complex questions requiring multi-hop inference. The proposed model makes use of highly expressive bilinear graph neural network (BGNN), which can utilize context information between a pair of neighboring nodes, as well as allows bidirectional feature propagation between each entity node and one of its neighboring nodes on a knowledge graph. Performing experiments with an open-domain knowledge base (Freebase) and two natural-language question answering benchmark datasets(WebQuestionsSP and MetaQA), we demonstrate the effectiveness and performance of the proposed model.
Various networks can be observed in the world. Knowledge networks which are closely related with technology and research are especially important because these networks help us understand how knowledge is produced. Therefore, many studies regarding knowledge networks have been conducted. The assortativity coefficient represents the tendency of connections between nodes having a similar property as figures. The relevant characteristics of the assortativity coefficient help us understand how corresponding technologies have evolved in the keyword-based patent network which is considered to be a knowledge network. The relationships of keywords in a knowledge network where a node is depicted as a keyword show the structure of the technology development process. In this paper, we suggest two hypotheses basedon the previous research indicating that there exist core nodes in the keyword network and we conduct assortativity analysis to verify the hypotheses. First, the patents network based on the keyword represents disassortativity over time. Through our assortativity analysis, it is confirmed that the knowledge network shows disassortativity as the network evolves. Second, as the keyword-based patents network becomes disassortavie, clustering coefficients become lower. As the result of this hypothesis, weconfirm the clustering coefficient also becomes lower as the assortative coefficient of the network gets lower. Another interesting result concerning the second hypothesis is that, when the knowledge network is disassorativie, the tendency of decreasing of the clustering coefficient is much higher than when the network is assortative.
In this paper I will discuss definitions of hypermedia, multimedia and hypertext. Hypertext is the grouping of relevant information in the form of nodes. These nodes are then connected together through links. In the case of hypertext the nodes contain text or graphics. Multimedia is the combining of different media types for example sound, animation, text, graphics and video for the presentation of information by making use of computers. Hypermedia can be viewed as an extension of hypertext and multimedia. It is based on the concept of hypertext that uses nodes and links in the structuring of information in the system. In this case the nodes consist of an the different data types that are mentioned in the multimedia definition above. The 'node-and-link' concept is used in organisation of the information in hypermedia systems. The 'book' metaphor is an example of the way these systems are implemented. This concept is explained and a few advantages and disadvantages of making use of hypermedia systems are discussed. A new approach for the development of hypermedia systems, namely the knowledge-based approach is now looked into. Joel Peing-Ling Loo proposed this approach because he thought that it is the most effective way for handling this kind of technology. A semantic-based hypermedia model is developed in this approach to formulate solutions for the restrictions in presenting information authoring, maintenance and retrieval. The knowledge-based presentation of information includes the use of conventional data structures. These data structures make use of frames(objects), slots and the inheritance theory that is also used in expert systems. Relations develop between the different objects as these objects are included in the database. Relations can also exist between frames by means of attributes that belong to the frames.
Hwang, Insung;Lee, Sang Hwa;Park, Jae Sung;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.169-172
/
2015
본 논문에서는 준 지도 학습에 기반한 중요 객체 검출 방법을 제안한다. 첫째, 색상과 공간 정보를 활용하여 이미지를 분할한 후, 분할된 영역을 색상의 유사도로 연결하여 그래프를 만든다. 둘째, 색 대비 및 가장자리 사전 지식을 활용하여 중요 객체에 해당하는 씨앗 노드와 배경에 해당하는 씨앗 노드를 추출한다. 끝으로, 중요 객체 및 배경 씨앗 노드를 이용하여 준 지도학습 기법에 적용함으로써 이미지 전체 노드의 중요도를 계산한다. 실험 결과, 제안한 알고리즘이 최신의 다른 알고리즘보다 높은 재현율 구간에서 높은 정밀도를 보임을 확인할 수 있고, 시각적으로도 좋은 성능을 보임을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.