• Title/Summary/Keyword: 지상충돌회피기법

Search Result 6, Processing Time 0.027 seconds

TRN을 이용하는 헬리콥터 3차원 GPS 항법의 실용화 알고리즘 연구

  • Kim, Eui-Hong;Jeon, Hyeong-Yong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.249-250
    • /
    • 2008
  • 본 연구는 전년도 지형참조항법(TRN; Terrain Referenced Navigation)에 근거하는 3-D 헬리콥터 항법 시스템을 위한 알고리즘 개발의 후속 연구로서 실용적 완성을 위해 수행되었다. 본 연구에서 헬리콥터의 위성항법장치(GPS)로부터의 정보(X,Y,Z 좌표)는 자동차가 도로주행중 매 1초 간격으로 수신되는 GPGGA Code로 대체되었다. 비행체는 3차원 직교 좌표 체계(Cartesian coordinate system)로 표현되는 수치지형모델(DTM; Digital Terrain Model)상에서 시점(Origination)-종점(Destination) 분석 기법에 의해 항로를 결정한다. 본 시스템은 우선 조종사에게 지형의 사전 인식을 위해 시점-종점 주변 3차원 지형도와 항로의 종단면도를 보여준다. 본 시스템은 직접적인 지상 충돌을 피하기 위해 지형 여유 층면(Terrain Clearance Floor)의 개념을 도입, 기복 지형 표면에 일정 높이의 완충 공간을 설정한다. 본 시스템은 매초 GPS로부터 실시간 수신되는 X,Y,Z 위치와 DTM상의 x,y,z를 비교하여 만약 비행체가 완충 공간에 접근하게 되면 즉시 경고음과 메시지를 발한다. 수치지형모델은 (주)첨성대가 확보하고 있는 3초 간격의 DTM을 채택, 작성하였다.

  • PDF

Vision-Based Collision-Free Formation Control of Multi-UGVs using a Camera on UAV (무인비행로봇에 장착된 카메라를 이용한 다중 무인지상로봇의 충돌 없는 대형 제어기법)

  • Choi, Francis Byonghwa;Ha, Changsu;Lee, Dongjun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In this paper, we present a framework for collision avoidance of UGVs by vision-based control. On the image plane which is created by perspective camera rigidly attached to UAV hovering stationarily, image features of UGVs are to be controlled by our control framework so that they proceed to desired locations while avoiding collision. UGVs are assumed as unicycle wheeled mobile robots with nonholonomic constraint and they follow the image feature's movement on the ground plane with low-level controller. We used potential function method to guarantee collision prevention, and showed its stability. Simulation results are presented to validate capability and stability of the proposed framework.

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Underwater Experiment on CSMA/CA Protocol Using Commercial Modems (상용 모뎀 제어를 통한 수중 CSMA/CA 프로토콜 시험)

  • Cho, Junho;Lee, Sang-Kug;Shin, Jungchae;Lee, Tae-Jin;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.457-465
    • /
    • 2014
  • This paper introduces a test bed for communication protocol schemes of underwater acoustic sensor network, and also shows experimental results obtained from the test bed. As a testing protocol, carrier sense multiple access/collision avoidance (CSMA/CA) is evaluated on underwater acoustic channel. A sensor node is equipped with a DSP control board of ATmega2560 and a commercial underwater modem produced by Benthos. The control board not only manipulates a GPS signal to acquire the information of location and time, but also controls the underwater modem to operate according to the procedure designed for a given testing protocol. Whenever any event takes place such as exchanging control/data packets between underwater modems and acquiring location and timing information, each sensor node reports them through radio frequency (RF) air interface to a central station located on the ground. The four kinds of packets for CSMA/CA, RTS(Request To Send), CTS(Clear to Send), DATA, ACK(Acknowledgement) are designed according to the underwater communication environment and are analyzed through the lake experiment from the point of feasibility of CSMA/CA in underwater acoustic communications.

An Enhanced DAP-NAD Scheme for Multi-Hop Transmission in Combat Net Radio Networks (전투 무선망에서 다중 홉 전송을 위한 향상된 DAP-NAD 기법)

  • Jung, Jong-Kwan;Kim, Jong-Yon;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.977-985
    • /
    • 2012
  • Recently, many countries have been developing new protocols to improve the performance of tactical ad hoc networks for implementing NCW (Network Centric Warfare). Combat net radio (CNR) networks are the most important communication infra for the ground forces such as infantry of Army. U.S. Army had developed MIL-STD-188-220D that is the Interoperability Standard for DMTDs (Digital Messages Transfer Device Subsystems) for voice and data communication in CNR. MIL-STD-188-220D is a candidate for MAC protocol of TMMR which is next radio and has a few constraints to used in TMMR. NAD (Network Access Delay) defined in MIL-STD-188-220D needs time synchronization to avoid collision. However, it is difficult for time synchronization to fit in multi-hop environment. We suggest the enhanced DAP (Deterministic Adaptable Priority)-NAD to prevent conflicts and decrease delays in multi-hop CNR. Simulation results show that the proposed scheme improves the performance in multi-hop CNR networks.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.