• Title/Summary/Keyword: 지상국 소프트웨어

Search Result 36, Processing Time 0.022 seconds

Design of Multi-Sensor Data Processing System for Real-Time Aerial Monitoring (실시간 공중 모니터링을 위한 다중센서 데이터 처리 컴퓨터의 설계)

  • Joe, Hyun-Woo;Lee, Jong-Hyuk;Kim, Hyung-Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.400-404
    • /
    • 2008
  • 무인항공기를 이용한 실시간 공중 모니터링은 재난 재해, 테러 등의 위기상황을 사전에 대비하고, 사고 발생 시 피해상황을 신속하게 파악할 수 있는 효율적인 관리 시스템이다. 실시간 공중 모니터링을 위해 무인항공부문에서는 고성능의 카메라, 관성항법장치, 레이저 스캐너, GPS 수신기 등의 다중 센서들을 장착하고, 제어하며 각 센서들로부터 입력받은 데이터 처리 및 지상국으로 데이터 전송이 실시간으로 가능해야 한다. 기존 무인 모니터링 시스템들은 카메라와 같이 단일 센서의 운용을 목적으로 설계되었으나, 본 연구에서는 레이져 스캐너, 적외선카메라를 포함하는 다중센서를 위한 컴퓨터를 설계하였다. 최근 다중센서를 장착한 관측시스템에 관한 연구가 미국 및 유럽에서 수행되고 있으나, 아직 개발이 완료되지 않은 상태이다. 본 논문에서는 고성능 다중 센서 데이터 처리를 위해 실시간 소프트웨어, 고속 대용량 데이터처리 기술, 고속 압축 기술, 이기종 다중 센서들 간의 시각 동기화 기능을 제공하는 탑재컴퓨터의 설계결과를 소개하였다.

  • PDF

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.

Engineering Model Design and Implementation of Mass Memory Unit for STSAT-2 (과학기술위성 2호 대용량 메모리 유닛 시험모델 설계 및 구현)

  • Seo, In-Ho;Ryu, Chang-Wan;Nam, Myeong-Ryong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.115-120
    • /
    • 2005
  • This paper describes the design and implementation of engineering model(EM) of Mass Memory Unit(MMU) for Science and Technology Satellite 2(STSAT-2) and the results of integration test. The use of Field-Programmable Gate Array(FPGA) instead of using private electric parts makes a miniaturization and lightweight of MMU possible. 2Gbits Synchronous Dynamic Random Access Memory(SDRAM) module for mass memory is used to store payload and satellite status data. Moreover, file system is applied to manage them easily in the ground station. RS(207,187) code improves the tolerance with respect to Single Event Upset(SEU) induced in SDRAM. The simulator is manufactured to verify receiving performance of payload data.

Optimization of Sun-synchronous Spacecraft Constellation Orbits (태양동기궤도 위성군 궤도 최적화에 관한 연구)

  • Kim, Hwayeong;No, Tae Soo;Jung, Okchul;Chung, Daewon;Choi, Jin-Heng
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • This paper presents a sun-synchronous orbit design which effectuvely includes the requirements derived from spacecraft to ground station contact and spacecraft to target image accessibility. For this purpose, operation parameters of multiple spacecraft are defined as Contact Overlap, Contact Overlap Gap, Access Overlap, Access Overlap Gap. These parameters are used to form a Figure of Merit that reflects the operational requirements. The Figure of Merit is optimized to increase the efficiency of operating multiple spacecraft in constellation and is used to determine the operational orbit of each spacecraft that constitutes the constellation.

Verification Test for GBAS Correction Information of KARI IMT (KARI IMT 시스템의 GBAS 보정정보 검증시험)

  • Yun, Young-Sun;Lim, Joon-Hoo;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.153-161
    • /
    • 2011
  • Korea Aerospace Research Institute (KARI) has implemented an integrity monitor testbed (IMT) to provide archived GPS data and test results for integrity monitoring algorithm development. To verify that the system is implemented based on international standard requirements, this paper represents the basic functional verification test results of the implemented testbed as a GBAS reference station. It compares the IMT generated GBAS message fields with those of PEGASUS, which is a baseline toolset accepted by international GBAS experts, to show the validity of the correction information. It also verifies the integrity and availability of the system through analysis on GBAS user data in the range and position domain.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.