• Title/Summary/Keyword: 지상국 개발

Search Result 159, Processing Time 0.021 seconds

중국의 과학기술과 방위산업 기반

  • Kim, Hun-Seop
    • Defense and Technology
    • /
    • no.3 s.157
    • /
    • pp.24-31
    • /
    • 1992
  • 중국은 생산수단을 과학적으로 연구하며, 과학기술개발 전략으로 특정분야에 집중해야 한다는 방침 아래 국가과학기술위원회와 국가계획위원회가 과학.기술정책을 총괄하며, 2000~2020년까지의 중.장기 과학기술개발 개요와 장기계획 전략을 수립하였다. 최근의 5개년계획은 장거리통신사업에 관한 프로젝트로서 현존 통신위성시스템을 개량하고 첨단위성 지상국과 디지탈통신기술을 도입하는 사업 등이 포함되어 있으며, 우주프로그램이 기술개발 전략의 중심을 이루고 있다

  • PDF

KPDS user interface and science data transfer sequence for scientists and public users in Korea Lunar Exploration Program

  • Kim, Joo Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2021
  • 현재 우리나라는 달탐사 개발 사업을 통하여 2022년 8월 발사를 목표로 달 궤도선인 KPLO와 과학임무 및 기술검증 임무를 수행하게 될 임무 탑재체, 임무 수행을 위한 각종 소프트웨어의 개발, 궤도/궤적의 설계 등 일련의 개발 과정을 순조롭게 수행하고 있다. 또한 달 궤도선인 KPLO와 이들 탑재체에 대한 운영과 관제를 수행하는 KPLO 심우주 지상국도 일정에 따라 개발 막바지에 접어들고 있다. 특히 KPLO 심우주 지상국에는 우리나라 대학과 정부출연연구소에 의해서 개발되는 과학탑재체 4기가 달 궤도에서 과학임무를 수행하여 얻게되는 달 탐사 과학자료, 즉, 과학임무자료를 달 탐사에 직접 참여하는 과학자들뿐만 아니라 일반인들도 교육 및 연구에 활용할 수 있도록 달 탐사 과학자료의 저장, 공개, 관리를 위한 Archive system인 KARI Planetary Data System(KPDS)도 함께 개발되고 있다. KPDS는 전문 연구자와 일반인들이 별도의 교육없이 인터넷을 통하여 쉽게 접속하여 KPLO의 과학탑재체가 획득한 달 탐사 과학자료를 검색하여 내려받아 사용할 수 있도록 서비스를 제공할 예정이다. 본 논문에서는 과학탑재체 개발기관 소속의 연구자가 달 탐사 과학자료에 대한 검보정 처리와 과학적 분석을 수행하기 위해서 텔레메트리 형태의 원본형태의 과학자료를 KPDS로부터 다운로드 받는 과정과 검보정 처리가 된 과학자료를 일반 사용자들이 내려 받아 사용할 수 있도록 과학자료가 공개되기까지 일련의 과정을 설명하고, 연구자 및 일반사용자가 직접 접하게 되는 KPDS의 주요한 사용자 환경에 대해서 설명한다.

  • PDF

과학위성 1호 GSC(Ground Station Controller) 개발

  • 오대수;오치욱;박홍영;박성수;정성인;김경희;이현우;강경인;곽성우
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.55-55
    • /
    • 2003
  • 과학위성 1호 발사 후 지상국에서 위성을 제어하기 위해서는 여러 대의 위성제어용 컴퓨터에서의 명령들을 과학위성 1호가 올바로 수신할 수 있도록 해야 하고, 마찬가지로 과학위성 1호에서 오는 정보들을 원하는 위성제어용 컴퓨터로 알맞게 입력되도록 해야한다. 지상국에서 이러한 역할을 하는 것이 바로 GSC (Ground Station Controller)이다. GSC를 과학위성 1호 운용하는 데 적합하게 만들기 위해 위성에서 사용되는 Modem과 동일한 성능의 Modem을 장착하였고 통신신호 제어를 위한 TNC(Terminal Node Controller)가 내장이 되어있다 이러한 GSC는 여러 위성제어용 컴퓨터의 명령을 TNC가 받아서 통신 신호를 제어한 후 원하는 Modem으로 거치도록 하고 그에 따른 Audio 출력 신호의 증폭률을 가변시킬 수 있다. 본 연구에서는 과학위성 1호 관제를 위한 GSC의 구조, Spec 및 연구 개발 내용을 소개한다.

  • PDF

과학위성 1호 Network System 개발

  • 박성수;오대수;신구환;유상문;박홍영;이현우;임종태;곽성우
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.56-56
    • /
    • 2003
  • 과학위성 1호의 OBC(On-Board Computer)와 Sybsystem 간, Subsystem간, 또는 위성과 지상국간의 통신이 가능해야한다. 그리고 OBC(On-Board-Computer)나 지상국에서의 위성의 모듈들을 명령(Command)을 통하여 제어할 수 있어야 한다. 또한 모듈들을 원격검침(Telemetry)을 통하여 상태를 확인할 수 있어야 한다. 위에서 언급한 기능을 수행하는 모듈이 바로 Network System이다 과학위성1호에는 총 6개의 Network System이 구현되었다. 각각의 Network System들은 여러 Subsystem들과 연결되어있고, Network System간에 또한 연결되어서 Subsystem간의 통신과 Network System에 연결된 모듈들을 제어하고 상태를 수집한다. 본 연구에서는 과학위성1호 Network System의 구조, 기능, Spec 및 연구 개발 내용을 소개한다.

  • PDF

Advanced Aerodynamics, Performance and Stability & Control Analysis for Light Aircraft in Detail Design Stage

  • Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.32-34
    • /
    • 2015
  • 캔위성은 대기권 내에서 낙하하며 실제 위성을 모사하는 초소형위성으로 저렴한 비용과 용이한 접근성으로 인공위성 시스템 교육과 실험 등에 있어서 많은 주목을 받고 있다. 이러한 점을 착안하여 Argos는 촬영위성과 통신위성 2기로 구성된 캔위성 시스템을 개발하였다. Argos는 해당지역의 영상을 수집하고 위성 간 통신을 하는 것을 주 임무로 하였다. 또한 자세데이터, 위치데이터, 온도, 압력을 수집하고 지상국으로 전송 하는 것을 부 임무로 하였다. Argos는 실제 발사된 이후 제한적인 임무를 수행하였고, 위성간의 통신으로 임무데이터를 지상국으로 전송하였다. 본 논문에서는 광범위 데이터 수집의 역할을 하는 Argos의 개발과정과 운용결과를 소개하고자 한다.

  • PDF

Capturing wide area data using Multiple Small Satellites (캔위성을 이용한 다중위성 운용 및 광범위 데이터 수집)

  • Kim, Sang-Geon;Gang, Min-Ji;O, Se-Seong;Lee, U-Gyeong
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.1-5
    • /
    • 2015
  • 캔위성은 대기권 내에서 낙하하며 실제 위성을 모사하는 초소형위성으로 저렴한 비용과 용이한 접근성으로 인공위성 시스템 교육과 실험 등에 있어서 많은 주목을 받고 있다. 이러한 점을 착안하여 Argos는 촬영위성과 통신위성 2기로 구성된 캔위성 시스템을 개발하였다. Argos는 해당지역의 영상을 수집하고 위성 간 통신을 하는 것을 주 임무로 하였다. 또한 자세데이터, 위치데이터, 온도, 압력을 수집하고 지상국으로 전송 하는 것을 부 임무로 하였다. Argos는 실제 발사된 이후 제한적인 임무를 수행하였고, 위성간의 통신으로 임무데이터를 지상국으로 전송하였다. 본 논문에서는 광범위 데이터 수집의 역할을 하는 Argos의 개발과정과 운용결과를 소개하고자 한다.

  • PDF

지상파 전파항법시스템에 적용하기 위한 eLoran Emulator 개발

  • Kim, Yong-Seok;Seol, Gwang-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.196-198
    • /
    • 2017
  • 미국, 러시아, 중국 등 선진국에서는 GNSS와 같은 위성항법시스템의 취약성에 대한 대비하기 위한 고정밀도의 지상파 전파항법시스템을 독자적으로 개발하여 운영 중에 있지만, 우리나라는 1979년도에 도입한 외산장비로 포항 및 광주 송신국을 구축하여 Loran-C 체인으로 지상파 전파항법시스템을 운영 중에 있다. 특히 위성항법시스템이 없는 우리나라 입장에서는 어느 위성항법시스템에 종속되지 않는 고정밀도의 지상파 eLoran 전파항법시스템 개발이 더욱 절실히 요구되고 있다. 본 연구 개발에서는 고정밀도의 eLoran 지상파 항법시스템 개발에 앞서 eLoran 송수신 시스템을 검증하고, 실제 공간상의 채널환경을 모사할 수 있는 eLoran emulator를 개발하였다.

  • PDF

Engineering Qualification Model Development of S-band Receiver for STSAT-3 (과학기술위성 3호 S 대역 수신기 기술인증모델 개발)

  • Lee, Jung-Su;Oh, Seung-Han;Seo, Gyu-Jae;Oh, Chi-Wook;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • The TT&C communication subsystem of STSAT-3 is consisted of communication link to send telemetry data of spacecraft to the ground station and receive command data from ground station. The S-band receiver is used to receive command data from ground station, Engineering Qualification Model of S-band receiver has been designed and manufactured. The Designed S-band Receiver uses a single conversion for a simple frequency conversion, including a DC-DC Converter and EMI Filter. Also, Digital demodulation part designed using FPGA and RS-422 data interface. The performance of S-band Receiver in functional and space environments test satisfies the requirements of STSAT-3.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.