• Title/Summary/Keyword: 지상/비행시험

Search Result 227, Processing Time 0.026 seconds

KSR-III 비행시험 발사 시나리오 개발

  • Shin, Myoung-Ho;Seo, Jin-Ho;Kim, Kwang-Soo;Hong, Il-Hi
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.140-152
    • /
    • 2003
  • Scenario is a guiding principle of launch operation and control for rocket and ground support system. Therefore, developing a scenario is the first step to prepare for rocket launch, which is a critical task for success of KSR-III flight test. The launch scenario for KSR-III flight test is a procedural sequence of command and control signals to be given to rocket and ground support systems. In this paper, the UML object modeling method is applied to development of a launch scenario. First, the subsystems of the launch system are modeled by objects, and then the interfaces between each two subsystems are modeled by association links. The finally obtained object diagram of KSR-III launch system is used to analyzing flow of data and commands and control signals, and interactions. The scenario includes the sequences of pre-launch/launch operations and emergency operations.

  • PDF

Development and Operations of LV PACS-II for the Launch Vehicle NARO (나로호 상단 발사관제시스템 개발 및 발사운용 결과)

  • Seo, Jin-Ho;Yoon, Won-Ju;Kim, Kwang-Soo;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.135-144
    • /
    • 2012
  • The NARO is South Korea's first carrier launch vehicle, which made its flights from NARO Space Center on 25 August 2009 and 10 June 2010. LV PACS(Preparation Automated Control System) is a electrical ground support system to monitor and control the integrated launch vehicle during the launch preparation and operation in Launch Complex. As a subsystem of LV PACS, LV PACS-II was developed for launch preparation and operation of the NARO upper stage, and all the functions and requirements were verified successfully through NARO flight tests. In this paper the core technology and characteristics applied to LV PACS-II are described.

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.183-188
    • /
    • 2008
  • Engine control/performance model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-32T were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tables, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the ground/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

  • PDF

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2239-2246
    • /
    • 2008
  • Engine control/performance model for helicopter simulator if one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model bated on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-327 were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tablet, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the round/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

Development and Performance Test of the Kick Motor Igniter (킥모터 점화기 개발 및 성능 시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.190-200
    • /
    • 2007
  • A pyrogen type igniter was designed to satisfy the requirements of KSLV-I Kick Motor system. To insure the reliability of the igniter before the production of the flight model, we have been performed the structure, environmental, combustion tests. The hydraulic test was carried out to confirm the strength of the components of the igniter. The shock and vibration tests were considered to check whether the igniter operates normally under the severe environmental condition. The combustion tests were also performed to understand the ignition characteristics with the variation of initial condition. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test.

  • PDF

Core Technologies of the X-51A SED-WR Program (X-51A 스크램제트 기술 실증기 개발 프로그램 핵심 기술)

  • Noh, Jin-Hyeon;Won, Su-Hee;Parent, Bernard;Choi, Jeong-Yeol;Byun, Jong-Ryul;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.79-91
    • /
    • 2008
  • The present article is intended to introduce the X-51A Scramjet Engine Demonstrator-Wave Rider (SED-WR) program and its core technologies to the korean propulsion community. The X-51A program is lead by the U.S. Air Force Research Laboratory (AFRL) and is sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA). Most of the contents is taken from the paper by Hank et al.[1] with the supplemental materials from additional references. X-51A is a hypersonic experimental vehicle for the flight test of the hydrocarbon fuel-cooled scramjet engine developed by the AFRL HyTech program. The scramjet engine and the hypersonic flight technologies may enter the era of practical use by the completion of the ground tests in 2008 followed by the flight tests scheduled in 2009.

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (3) - Flight Test Results and Analysis of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (3) - 태양광 무인기 비행실험 결과 및 분석 -)

  • Kim, Doyoung;Kim, Taerim;Jeong, Jaebaek;Park, Sanghyuk;Bae, Jae-Sung;Moon, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.489-496
    • /
    • 2022
  • This paper introduces the system for KAU-SPUAV, which is designed and developed by Korea Aerospace University, and verifies its performance through flight test. Specification of two versions of KAU-SPUAV, avionics system, and Ground Control System (GCS) are introduced. Three missions are performed with suggested UAVs: LTE signal mapping, circumnavigation of Jeju island seashore, and long endurance flight. Each mission consists of long distance and long endurance flight which takes advantage of KAU-SPUAV. Research team of KAU-SPUAV confirmed its versatility through suggested flight data. Also based on flight results, the team found the potential of performance improvement of KAU-SPUAV.

Performance Analysis of Telemetering Method using Delayed Frame Time Diversity (DFTD) and Reed-Solomon Code (지연프레임 시간다이버시티와 RS 코드를 사용한 원격측정방식의 성능분석)

  • Koh, Kwang-Ryul;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.503-511
    • /
    • 2012
  • In this paper, the performance analysis of telemetering method using delayed frame time diversity (DFTD) as the outer code and Reed-Solomon (RS) code as the inner code is described. DFTD is used to transmit a real-time frame together with a time-delayed frame which was saved in the memory during a defined period. The RS code as a kind of FEC (forward error correction) is serially concatenated with DFTD. This method was applied to the design of telemetry units that have been used for flight tests in a communication environment with deep fading. The data of the flight test for four cases with no applied code, with DFTD only, with the RS code only, and with both DFTD and the RS code are used to analyze the performance. The simulation for time-delay suggests the possibility that all frame errors can be removed. And the results of 12 flight tests show the performance superiority of this new method to compare with the RS code only.

The Study on Experimental Measurement Method of Hinge Moment Acting on Control Surface of Air Vehicle (비행체 조종면에 작용하는 힌지 모멘트의 시험적 측정 방법 연구)

  • Park, Jong-Min;Chung, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • This paper contains the test method to obtain aerodynamic hinge moments acting on the control surface of air vehicle wing. During the flight, hinge moments make difference between actual control surface angle and control angle which is measured by sensor of actuator. The hinge moments can be obtained by using this difference. Static ground load test and calibration test were conducted to obtain torsional stiffness of control surface actuation system. This results are used to calculate hinge moments. In addition, the mechanical errors of actuation system such as slip angle of mounting point and backlash could be estimated. Using flight test results, this experimental measurement method of hinge moment acting on control surface is conducted. The results of this method are similar to those of numerical simulation method, and the validity of this method is proved.