• Title/Summary/Keyword: 지보 설계

Search Result 170, Processing Time 0.026 seconds

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

A study on the relationship between initial and final convergence in NATM tunnels (NATM 터널 굴착시 초기 내공변위와 최종 내공변위의 상관관계 연구)

  • Kim, Bum-Joo;Hwang, Young-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • A tunnel behavior predicted in the investigation and design stage is often different from its actual behavior due to mainly the complexity of ground conditions. In a tunnel construction, therefore, it is necessary to ensure the stability of the tunnel by predicting the behaviors of the ground and the supports through observations and measurements, and modifying immediately excavation and reinforcing methods when necessary. To do so, it is important to be able to predict the final tunnel behavior based on the initial tunnel behavior as early as possible. In this study, the correlations were obtained between the initial and the final convergence by analyzing statistically the convergence measurement data, collected from two domestic road tunnels under construction using NATM. In order to estimate the unknown displacements, occurred during the period between the excavation and the first measurement, two methods were used - one is the method by means of regression analysis using a modified exponential function and the other the method by a simple linear regression analysis using the data measured within the distance from tunnel face equal to the tunnel diameter (D). Finally, the relationships were obtained between the initial and final convergence, including the non-measured displacements estimated from the two different methods, by performing linear regression analyses. The regression analysis results showed that there are clear linear relationships between the initial and final convegence and the difference between the two linear regression equations was not that large for when using the exponential function and the simple linear function to estimate the non-measured displacements.

  • PDF

A study on correlation between electrical resistivity obtained from electrical resistivity logging and rock mass rating in-situ tunnelling site (전기비저항 검층으로 얻은 전기비저항과 터널 현장 암반등급의 상관관계에 관한 연구)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jin-Ho;Ahn, Hee-Yoon;Kim, Ki-Seog;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.503-516
    • /
    • 2012
  • Rock mass rating (RMR) is the key factor when designing the appropriate support pattern of tunnel projects. Borehole drilling is usually performed along the tunnel route in order to determine the rock mass rating to be used for tunnel design. The rock mass rating at the non-boring region between boreholes is usually assessed through geophysical surveys such as electrical prospecting, seismic prospecting, etc. Many studies were carried out to find out the correlation between electrical resistivity and rock mass rating. However, most researches were aimed at obtaining the relationship between the two parameters utilizing experimental results obtained from laboratory tests or electrical prospectings. In this paper, efforts were made to analyze and obtain relationships between the electrical resistivity obtained from in-situ electrical resistivity logging data and the rock mass rating. Correlation studies using field data showed that the electrical resistivity is highly correlated with the rock mass rating with the determination coefficient more than 90%. The correlation analysis was also carried out between RMR classification parameters and the electrical resistivity. It was shown that the correlation between the condition of discontinuities and the electrical resistivity was very high with the determination coefficient more than 80%; that between the groundwater condition and the electrical resistivity was very low with the determination coefficient less than 57%.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

An Experimental Study of the Soil Nailed Wall Behavior with Front Plate Rigidity (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho;Park, Si-Sam;Cho, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.87-94
    • /
    • 2002
  • Recently, there have been numerous attempts to expand the traditional temporary soil nailing system into a permanent wall. Two reasons for this include the soil nailed system's advantage of efficient and economic use of subgrade space and its ability to decrease the total construction cost. However, the systematic and logical design approach has not been proposed yet. The permanent soil nailing wall system, which utilizes precast concrete from soil nailing system, is already used in many countries, but the study of cast-in-place concrete lacing or rigid walls in bottom-up construction of traditional soil nailing walls is imperfect and insufficient. In this paper, various laboratory model tests have been carried out to investigate the influence of parameters, including stiffness of the rigid wall to the soil nailing structure with respect to failure mode, displacement patterns and tensile forces at the nail head in several levels of load. Then, the variation of earth pressure distribution on the soil nailing wall, built with a rigid front plate, is sought through different levels of surcharge load and tensile forces at the nail head.

Effects of Artificial Culture Medium of Wild Ginseng on the Physico-chemical Characteristics of Pork (돈육의 이화학적 품질 특성에 미치는 산삼 배양액 급여 영향)

  • Jin, Sang-Keun;Kim, Il-Suk;Jung, Hyun-Jung;Kim, Dong-Hoon;Lee, Jae-Ryong
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.337-342
    • /
    • 2006
  • A total of 120 pigs (Berkshire) were used to investigate the effect of dietary supplementation with artificial culture medium of wild ginseng (CWG) on the physico-chemical characteristics of pork About $60{\pm}3kg$ pigs were randomly assigned to 4 pens based on sex and diet (C: commercial diet feed or T: commercial diet+1 L CWG per day for 70 days). Pigs were slaughtered at approximately 110 kg live weight, and proximate composition and physico-chemical characteristics were measured in pork loin. The moisture content, hardness and chewiness of pork were higher in gilt fed CWG than in gilt fed the control diet, but the water-holding capacity of pork and $L^*$ values of fat color were lower. The shear force and $a^*$ values of pork were higher in barrow fed CWG than in harrow fed the control diet. The crude fat content, hardness, cohesiveness, chewiness of pork and $a^*\;and\;b^*$ values of fat color were lower in barrow than in gilt, but the pH was higher. These results imply that the proximate composition and physico-chemical characteristics of pork could be affected by dietary supplementation with CWG and the sex of the pig, while the texture properties and at values of pork may be improved with dietary CWG.

A Platform Providing Interactive Signage Based on Edge-cloud Cooperation (엣지-클라우드 협업 기반 인터랙티브 사이니지 제공 플랫폼)

  • Moon, Jaewon;Kum, Seungwoo;Lee, Sangwon
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2019
  • Advances in IoT data analysis technology have made it easier to analyze situation and provide interactive services based on the context. Most of digital signage application have been used to provide information uni-directionally, but in the future it will evolve to provide personalized content according to the individual user situation and responses. However, it is not easy to modify or apply the existing interactive digital signage platforms due to their hardware dependency. The proposed platform is modularized by dividing main functions into two, the cloud and the edge, so that advertisement resources can be easily generated and registered. Thus, interactive advertisement can be rendered in a timely manner based on sensor analysis results. At the edge, personal data can be processed to minimize privacy issues, and real-time IoT sensor data can be analyzed for quick response to the signage player. The cloud is easier to access and manage by multiple users than edge. Therefore, the signage content generation module improves accessibility and flexibility by handling advertisement contents in the cloud so that multiple users can work together on the cloud platform. The proposed platform was developed and simulated in two aspects. First is the provider who provides the signage service, and second is the viewer who uses the content of the signage. Simulation results show that the proposed platform enables providers to quickly construct interactive signage contents and responses appropriately to the context changes in real-time.

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load (지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구)

  • Oh, Dong-Wook;Hong, Soon-Kyo;Kim, Dae-Kon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.279-299
    • /
    • 2019
  • Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.