• Title/Summary/Keyword: 지배인자

Search Result 328, Processing Time 0.026 seconds

Ultrasonically Enhanced Liquid Flow through Porous Media and Variance of Influencing Factors (초음파 투사에 따른 흙시료 내 투수속도의 증가와 그 영향인자의 변화)

  • Kim Young-Uk;Yang Sung-Jae;Khim Jee-Hyeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.91-98
    • /
    • 2004
  • This paper presented results of the laboratory tests conducted to investigate ultrasonically enhanced flow rate using specially designed and fabricated equipment. Influencing factor, ${\alpha}_i$ was verified to investigate the effect of ultrasound on soil matrix and flowing liquid. The test conditions involve soil types, temperature and ultrasonic energy. The test results indicate that ultrasound enhances the flow rate significantly. The degree of enhancement and the values of influencing factors, however, vary with test conditions.

The Optimum Solution for the Best Performance of ABS (ABS수지 성능 최적화 방안)

  • Mun, Hong-Guk;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • We investigated resin, thinner, painting, and injection for analyzing the chemical effect of polymer, and made the optimum solution with the best performance of ABS (acrylonitrile butadiene styrene) resin. The effect depended on chemical material especially its chemical and physical properties instead of mechanical transformation. When we looked over ABS resin, injection, chemical material and painting, we found out thinner was the main factor for painting problem. Throughout this test, we could solve the problem, secure the system for control process and drop many factors for changing quality.

Estimation Method of Evapotranspiration through Vegetation Monitoring over Wide Area (식생해석을 통한 광역증발산량 추정 방법의 개발)

  • 신사철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration over wide area in connection with regional characteristics of vegetation and landuse. Factors controlling evapotranspiration from ground are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influnce the vegetation at the area. Therefore we can expect high correlation between the evapotranspiration and the vegetation. To grasp the state of vegetation at any point, NDVI calculated from NOAA/AVHRR data is utilized. It can be considered that evapotranspiration at a forest region is linearly proportional to the NDVI. Here, a model which adopts a direct method to estimate actual evapotranspiration is developed by using the relationship between NDVI and evapotranspiration. This method makes possible to estimate evapotranspiration of Korean Peninsula including North Korea where enough meteorological and hydrological data are unavailable.

  • PDF

Estimation of Areal Evapotranspiration Using NDVI and Temperature Data (NDVI와 기온자료를 이용한 광역증발산량의 추정)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.79-89
    • /
    • 2004
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration in connection with regional characteristics of vegetation and landuse. The factors controlling evapotranspiration from ground surface are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influences the vegetation growth at the area. Therefore, it can be expected that evapotranspiration is highly correlated to vegetation condition. The normalized difference vegetation index (NDVI) showed excellent ability to get the vegetation information. The NDVI is obtained using NOAA/AVHRR have been studied as a tool for vegetation monitoring. In this paper, a simple method to estimate actual avapotranspiration is proposed based on vegetation and meteorological data.

  • PDF

Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts (압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구)

  • Kim, Jung Sub;Jo, Nanhyeon;Nam, Jung Soo;Lee, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.607-612
    • /
    • 2017
  • Recently, additive manufacturing (AM) technology, also known as 3D printing technology, has attracted attention as an innovative production method to fabricate functional components having complex shapes with saving materials. In particular, a fabrication of poly lactic acid (PLA) parts through a fused deposition modeling (FDM) technique has attracted much attention in the medical field. In this paper, an experimental study on the identification of dominant process parameters influencing mechanical properties of PLA parts fabricated by the FDM process is conducted, and their optimal values for maximizing the mechanical properties are obtained. Three process parameters are considered in this research, namely, layer thickness, a part orientation and in-fill. It is known that thin layer thickness, part orientation diagonal to the tension direction, and full in-fill are optimal conditions to maximize the mechanical properties.

A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach (평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.335-356
    • /
    • 2011
  • In this paper, we attempted to suggest a way to evaluate appropriateness and efficiency for the energy consumption structure. For this, based on Markowitz (1952)' mean-variance portfolio model, we constructed an optimal fossil fuel mix. In constructing the optimal mix, we first defined returns on fossil fuels (oil, coal and natural gas) as TOE (Ton of Oil Equivalent) per $1. Then, by using the dynamic latent common factor model, we decomposed the growth rates of the returns on each fossil fuel into two parts : the common part and the idiosyncratic part. Finally, based on the results from the dynamic latent common factor model, we constructed the optimal fossil fuel mix implied by the mean-variance portfolio model. Our results indicate that for the fossil fuel mix to be on the efficient frontier, it is crucial to reduce oil consumption as low as possible. Moreover, our results imply that it is more efficient to increase natural gas consumption rather than coal consumption in reducing oil consumption. These results are in line with the strategies for the future energy consumption structure pursued by Korea and indicate that reduction in oil use can improve overall efficiency in energy consumption.

  • PDF

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

Soil Moisture Measurements and Correlation Analysis to Understand the Runoff Generation Process for a Bumrunsa Hillslope of Sulmachun Watershed (설마천 범륜사 사면 유출과정의 이해를 위한 실측토양수분 상관도 분석)

  • Kim, Sang-Hyun;Kang, Mi-Jeong;Kwak, Yong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.351-362
    • /
    • 2011
  • The soil moisture measurements and correlation analysis are presented to improve understanding the hydrological process at the hillslope scale. The rainfall events is a main driver of soil moisture variation, and its stochastic characteristic need to be properly treated prior to the correlation analysis between soil moisture measurements. Using field measurements for two designated periods during the late summer and autumn seasons in 2007 obtained from the Bumrunsa hillslope located at the Sulmachun watershed, prewhitened correlation analysis were performed for 8, 14, 7 and 7 relationships representing the vertical, lateral, recharge and return flows, for two designated periods, respectively. The analysis indicated both temporal and spatial variation patterns of hydrological processes, which can be explained by the relative contribution of matrix and macropore flows and the impact of transect topography, respectively.

Determination of Flow Patterns for Multi-Phase Flow in Petroleum Production Systems (석유생산 시스템에서 다상유동의 패턴 결정)

  • Lee, Kun-Sang;Kim, Hyun-Tae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • A comprehensive mechanistic model has been used to determine the flow pattern for gas-oil two-phase flow in pipes of petroleum production system. Depending on operational parameters, geometrical variables, and physical properties of the two phases, the two phases shows a specific flow patterns. For different parameters of the system, How pattern were compared for wide range of superficial velocities of oil and gas. In a variety of parameters, the inclinational angle and superficial velocities of oil and gas are the most dominant factors in determining the flow patterns for two-phase flow in pipelines. Other parameters such as pipe diameter and fluid properties have a limited effect on the change of flow patterns except for near transition. The mechanistic model is shown to be useful to determine the flow pattern in situations where either an experimental evaluation in a laboratory or reliable correlations are not available.

Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures (장방형 부유구조물에 대한 동유체력-구조응답 특성)

  • Oh, Young-Cheol;Gim, Ok-Sok;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.577-583
    • /
    • 2012
  • Structures floating in the ocean experience various kinds of external loads, among which wave load is considered as determining factor in structural design. Its relative size compared with wavelength may be used to classify whether the structure is relatively small or large. Traditionally, the small structures are assumed to have little diffraction and the wave loads on large structure are usually calculated by only considering inertia force according to diffraction. In this paper, rectangular floating structures usually used in the ocean, river, and lake are used to find the relationship between hydrodynamic forces and its structural response.