• Title/Summary/Keyword: 지방합성

Search Result 547, Processing Time 0.025 seconds

Mode of Action of the New Diphenyl Ether Herbicide KC6361 (새로운 백화형 디페닐에테르계 화합물 KC-6361의 제초작용기작)

  • Kim, J.S.;Kim, T.J.;Kim, Y.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.14 no.2
    • /
    • pp.81-93
    • /
    • 1994
  • This study was conducted to characterize herbicidal activity of the new type diphenylether compounds inducing bleaching(whitening) in relation to their chemical structures and to find out the herbicidal action mechanism. Bleaching was highly appeared in the compounds which have short chain alkyl or allyl group of cabamoyl type in meta position of A ring and nitro group in para position of B ring, and KC6361 showed the highest efficacy among these derivatives. Rice was tolerant to KC6361 at 2.0kg/ha. The applications of this compound at 0.25~1.0kg/ha provided acceptable control of the various weeds including large crabgrass, barnyardgrass, pigweed and so on. In the dark condition, KC6361 decreased carotenoid contents but increased chlorophyll in etiolated cucumber cotyledon. By the increase of light intensity, the carotenoid biosynthesis was more inhibited than the chlorophyll biosynthesis. The incorporation of $C^{14}$-acetate into lipid was slightly inhibited. Both KC6361 and norflurazon stimulated growth of dwarf rice(cv. Daneunbanju). These results suggest that both KC6361 and norflurazon may have the same action sites. To confirm this hypothesis, the changes of carotenoid intermediates in cucumber cotyledon and barnyardgrass leaf treated with KC6361 were investigated. Phytoene and phytofluene were increased but ${\beta}$-carotene was decreased, indicating that KC6361 inhibited phytoene and/or phytofluene dehydrogenase like norflurazon.

  • PDF

Effects of Unripe Black Raspberry Water Extract on Lipid Metabolism and Oxidative Stress in Mice (복분자 미숙과 물 추출물이 마우스의 지질대사 및 산화적 스트레스에 미치는 영향)

  • Choi, Hye Ran;Lee, Jung-Hyun;Lee, Su Jung;Lee, Min Jung;Jeong, Jong Tae;Lee, Tae-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.489-497
    • /
    • 2014
  • We examined the effects of unripe black raspberry water extract (UBR-W) on lipid metabolism and oxidative stress in mice. C57BL/6J mice were divided into 4 groups: those administered a control diet (CTL), high-fat diet (HFD), UBR-W and simvastatin for 12 weeks. In the HFD group, LDL cholesterol were significantly higher than in the CTL group. However, the UBR-W treated group showed dose-dependent reduction of plasma LDL levels. Hepatic total lipid, TC, and malondialdehyde were significantly increased in hyperlipidemic mice. However, supplementation with either UBR-W or simvastatin effectively reduced these lipid profiles and lipid peroxidation. UBR-W increased mRNA expression of the LDL receptor, sterol regulatory element binding protein 2 (SREBP2), 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase and ATP-binding cassette transporter A1 (ABCA1) compared to that observed in the HFD group. In addition, UBR-W and simvastatin showed significantly reduced oxidized LDL uptake by the scavenger receptor CD36. These results suggest that UBR-W is useful for treatment and prevention of hyperlipidemia and lipid peroxidation.

Phenolics Level and Antioxidant Activity of Methanol Extracts from Different Plant Parts in Youngia sonchifolia (고들빼기 부위별 메탄올 추출물의 폴리페놀 함량 및 항산화성 연구)

  • Chon, Sang-Uk;Kang, Jong-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Proximate composition, total phenolics and total flavonoids level, DPPH radical scavenging activity, and cytotoxicity were determined in the methanol extracts of different plant parts of Youngia sonchifolia at reproductive growth stage. Crude protein and crude fat were present as the highest amount in flowers, and crude fiber in the stems and roots. The highest content of phenolics [mg ferulic acid equivalents (FAE) $kg^{-1}$ dry weight (DW)] was found in flowers (highest) and followed by leaves, stems and roots (lowest). Flavonoids [mg rutin equivalents $kg^{-1}$ DW] level, however, showed the highest in leaf extracts and lowest in root extracts. The antioxidant potential of the methanol extracts from the plants dose-dependently increased DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity (%). DPPH radical scavenging activity were highest in root extracts ($IC_{50}=1,135.6\;mg\;kg^{-1}$) and followed by leaf, stem and flower extracts. By way of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, methanol extracts of roots showed the highest anticancer activity on human cancer cell line Calu-6 for human pulmonary carcinoma ($IC_{50}=196.3\;mg\;kg^{-1}$) and HCT-116 for human colon carcinoma ($IC_{50}=623.6\;mg\;kg^{-1}$).

The Isolation and Characterization of the Antagonistic Microorganisms, Serratia marcescens-YJK1, for Major Pathogens on Paprika (파프리카에 발생하는 주요 병원균에 대한 길항미생물, Serratia marcescens-YJK1, 분리와 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.855-868
    • /
    • 2014
  • Synthetic agro-chemicals have been widely used to control diseases on paprika but these days negative attention has been increasing to use of them because of several adverse effects. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ1 isolated in this research belongs to a group of Serratia marcescens. Specially, 16S rDNA gene sequence of YKJ1 showed 99% of sequence similarity with S. marcescens. Observation through the optical microscope revealed that YKJ1 suppressed the spore germination and the hyphal growth of pathogens. YKJ1 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. S. marcescens found in this study call as S. marcescens-YKJ1 and it may be valuable as one of biological control agents against major diseases of paprika in the future even though it is require to be tested with more study on field test.

Protective Effects of Akebia quinata Fruit Extract on Acute Alcohol-induced Hepatotoxicity in Mice (급성 알코올 간독성을 유발한 생쥐에 있어서 으름 열매 추출물의 간 기능 보호효과)

  • Lee, Sang Hoon;Song, Young Sun;Lee, Seo Yeon;Kim, So Young;Ko, Kwang Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.622-629
    • /
    • 2014
  • We studied the effects of Akebia quinata fruit extract (AQ) on acute alcohol-induced hepatotoxicity in mice. AQ (30-1,000 mg/kg body weight (BW) per day) was orally administered to the study group, once daily for 1 week. On the last day of AQ treatment, ethanol (6 mg/kg BW) was orally administered to induce acute liver injury. The AQ-treated group showed significantly lower levels of alanine aminotransferase and aspartate aminotransferase, compared to the only ethanol-treated group (ETG). The glutathione level in the AQ-treated group elevated up to 20.6%, compared to that observed in the ETG. The mRNA expression of glutathione synthetic enzymes was also higher in the AQ-treated group, compared to the ETG. The AQ-treated group also exhibited lower levels of expression of NADPH oxidase 4 and tumor necrosis factor alpha mRNA. Thus, these results show that AQ treatment can be a potential method to reduce oxidative stress and inflammation in ethanol-treated mouse liver and also that AQ can be a useful therapeutic agent for acute alcohol-induced hepatotoxicity.

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Quality Characteristics of Candy Products Added with Hot-Water Extracts of Korean Mountain Ginsengs (장뇌삼 열수추출액 함유 캔디제품의 품질특성)

  • Kim Jun-Han;Kim Jong-Kuk
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.336-343
    • /
    • 2005
  • This study was conducted to investigate the quality characteristics of candy products added with hot-water extract of korean mountain ginsengs as the useful food materials. Water content of the products were $0.41{\sim}0.88\%$. Candy product with $5\%$ addition showed the highest content($87.5\%$) in Brix. pH ranges of the products were $5.50{\sim}5.56$. In terms of Hunters color value, L value was lower in $10\%$ candy product(56.40) than that of other products, while a and b value were increased in $10\%$ candy product. Sucrose was the major free sugar of candy products, and major organic acids were malic, tartaric and citric acid. Free amino acids were predominantly arginine, serine, aspartic acid and proline. The major minerals were K, Mn, Na and Mg. Antioxidant activity of candy products were about $64.28{\sim}70.88\%$ compared to $96.81\%$ of BHA(200 ppm). Result of sensory evaluation of $10\%$ candy products gained higher sensory score in overall acceptance, compared to the other products.

Optimization of the Preparation Conditions and Quality Characteristics of Sweet Pumpkin-Doenjang Sauce (단호박된장소스 제조조건의 최적화 및 품질 특성)

  • Chang, Kyung-Ho;Cho, Kyung-Hoon;Kang, Min-Kyung
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.492-500
    • /
    • 2012
  • This study was conducted to develop a sauce prepared with sweet pumpkin and Korea Doenjang. The optimum conditions for manufacturing sweet pumpkin-doenjang sauce were investigated using the response surface methodology, based on the central composition design. The amount of stock added, the thickening agent, and doenjang were used as the independent variables, and the sensory characteristics (taste, flavor, color, and overall acceptability) were used as the dependent variables to evaluate the optimum conditions for the preparation of the sauce. The optimum conditions for the maximized-responses variables in the preparation of the sauce were 448.5 g of sweet pumpkin stock, 331.5 g of the thickening agent, and 20.0 g of doenjang. The quality characteristics of sweet pumpkin-doenjang sauce that was manufactured at optimum conditions were as follow: 89.55% moisture content, 0.70% crude protein, 0.10% crude lipids, and 0.71% crude ash. The pH of the sauce was 5.96; total acidity, 0.08%; and soluble solids, 6.80$^{\circ}Brix$. The total polyphenol content of the sauce was 5.70 mg/L. The electron-donating ability and reducing power of the sauce were, 14.24% and 1.64 OD, respectively.

Application Timings of Insecticides to Control the First Generation of the Asian Corn Borer, Ostrinia furnacalis in Waxy Maize Fields (찰옥수수 포장에서 1세대 조명나방(Ostrinia furnacalis) 방제를 위한 살충제 처리 시기)

  • Jung, Jin Kyo;Seo, Bo Yoon;Jeong, In-Hong;Kim, Eun Young;Lee, Si Woo
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.431-448
    • /
    • 2021
  • We decided the efficient application timings of organo-synthetic insecticides for controlling the first generation larvae of O. furnacalis through investigations of insect stage-specific densities, damage aspects in maize, and effects of insecticides. A waxy maize cultivar, Ilmichal, was cultivated from April 20 (sowing) to July 26 (harvest, dough stage of maize) in Suwon, 2016. The maximum and 50% cumulative catch dates of the overwintering generation adults in the sex pheromone trapping were May 29 and May 31, respectively. Most of the first generation larvae finished their occurrence till the early reproductive stage of maize. The first generation larvae fed on leaves inside the whorl leaves before tassel and stem development of maize, sequentially moved to tassel and stem, and then moved finally to stem and ear parts. In the results of insecticide applications at different dates, the 9-11 leaf stage (June 10~17) and the 6-7 leaf stage (June 3) of maize were the most efficient application timings for direct spray of Etofenprox EC to maize, and for application of Carbofuran granules onto soil surface, respectively, which resulted in suppression of tunnelling damages. The timings for the two insecticides were 12-19 days and 5 days after the adult maximum catch date, respectively. Those timings after the 50% cumulative adult catch date were advanced 2 days.

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.