• Title/Summary/Keyword: 지방산 메틸에스터

Search Result 7, Processing Time 0.018 seconds

Pretreatment of Vegetable Oil Using Ion-exchange Resin and Biodiesel Production (이온교환수지를 이용한 식물유지의 전처리 및 바이오디젤 생산)

  • Hong, Yeon-Ki;Huh, Yun-Suk;Hong, Won-Hi;Oh, Sung-Woo
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.104-108
    • /
    • 2007
  • Biodiesel is a fatty acid alkyl ester produced by chemical reaction of a vegetable oil or animal fat and an alcohol. It is getting attention as a clean alternative energy that can replace gas oils. In this study, strong acidic ion exchange resin was introduced in the pretreatment process of the used cooking oil and rapeseed oil to enhance the conversion of the oil to the biodiesel by removing FFA(free fatty acid). More than 90% FFA was removed. Dry resins showed higher FFA removal efficiency than wet resins. Using transesterification the conversion of triglyceride into fatty acid methyl ester was raised up to 98%. These results can be applicable to the pretreatment of biodiesel feedstocks having high acidic value.

  • PDF

Biodiesel Production by Transesterification of Crude Soybean Oil with Methanol (대두원유의 전이에스테르화 반응에 의한 바이오디젤 제조)

  • Kim, Deog-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.533-536
    • /
    • 2006
  • 재생 가능한 자원인 동 식물성 기름으로부터 제조되는 수소용 연료 바이오디젤은 낮은 대기오염 배출과 $CO_2$ Neutral 특성으로 환경 친화적인 연료로 인정을 받으며 전 세계적으로 그 생산량이 급격히 증가하고 있다. 바이오디젤 생산 기술에는 직접이용법, 마이크로 에멀젼법, 열분해법, 에스테르화법, 초임계 메탄올 이용 생산법 등이 있으며 현재의 대부분의 상용 공정은 전이에스테르화법에 근거하고 있다. 이 공정은 크게 나누어 원료 유지 물질의 전처리 단계, 촉매를 사용하여 알콜과 에스테르화시키는 단계, 그리고 생성된 바이오디젤/글리세린의 분리와 정제 단계로 이루어지며 각 단계의 세부기술은 바이오디젤 생산비에 직접적인 영향을 미친다. 본 연구에서는 대두 원유의 전처리 반응, 전처리된 대두원유의 전이에스테르화 반응, 그리고 분리 및 정제 공정의 운전 변수들의 영향에 대한 연구결과와 본 연구를 통해 확립된 생산 공정으로 생산한 연료 grade의 바이오디젤 연료 물성 평가하였다.

  • PDF

Biodiesel Production from Waste Frying Oil by the Chemical Catalysts (폐유지로부터 화학촉매에 의한 바이오디젤 생산 연구)

  • Kim Deog-Keun;Lee Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.487-490
    • /
    • 2005
  • 재생 가능한 자원인 동식물성 기름으로부터 만들어지는 수송용 연료 바이오디젤은 낮은 대기오염물질 배출과 $CO_2$ Neutral 특성으로 환경친화적인 연료로 인정올 받으며 전세계적으로 그 생산량이 급격히 증가하고 있다 한국에서는 년간 20만톤의 폐식용유가 배출되며 이중 약 10만톤이 회수 가능한 것으로 추산된다. 폐식용유의 무단 폐기로 인한 수질오염과 폐기물의 자원 재활용 및 에너지 생산 관점에서 폐식용유를 바이오디젤 원료로 사용하는 연구가 많이 진행되었다. 높은 함량의 유리지방산을 함유한 폐식용유를 효율적으로 전이에스테르화(methanolysis) 하기 위해서는 먼저 산 촉매를 이용한 유리지방산의 전환 제거가 필요하다 본 연구에서는 다양한 종류의 강산성 이온교환 수지를 폐식용유의 전처리(pre-esterification)용 고체 산 촉매로 회분식 반응기에서 테스트하였으며 그 결과 Amberlyst-15가 유리지방산의 에스테르화 반응에 가장 적합한 것으로 나타났다. 회분식 반응기에서 도출된 최적 전처리 반응조건을 적용한 200시간 이상의 연속 전처리 운전결과 폐식용유에 함유된 $5\%$의 유리지방산이 $90\%$이상 전환제거 되었다 전처리 반응 후의 폐식용유를 균질계 염기촉매(KOH) 존재하에 메탄올과 전이에스테르화 반응을 시킨 결과 바이오디젤로 불리는 지방산메틸에스테르(Fatty Acid Methyl Ester, FAME)의 생산 수율은 $85\%$로 얻어졌으며 국내 바이오디젤 표준 규격에 따른 연료특성 분석 결과 FAME의 농도 규격을 제외한 모든 항목이 국내 규격을 만족하였다 폐식용유 바이오디젤의 FAME 농도가 $94.3\%$로 국내 규격$96.5\%$에 미달하는 문제는 식물성 원료유로 제조한 고순도 바이오디젤과 혼합 사용하거나 감압 증류 공정을 통해 고농도의 폐식용유 바이오디젤을 제조하여 해결 가능하다. 대전시 신성동 소재의 음식점에서 수거한 폐식용유를 원료로 하여 생산한 바이오디젤의 차량 배출가스 실증 테스트 결과 경유 차량의 주 오염물질인 PM과 Soot 및 기타 오염물질의 배출량은 감소하였으나 NOx의 배출량은 약간 증가하는 것으로 나타났다

  • PDF

Biodiesel Production Using Castor Oil and Quality Analysis (피마자유로부터 바이오디젤 생산을 위한 물성 분석)

  • Kim, Deogkeun;Lee, Joonpyo;Park, Soonchul;Lee, Jinsuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.176.2-176.2
    • /
    • 2011
  • 피마자유(Castor oil)는 합성수지, 그리스, 유압용 오일, 윤활기유 등의 다양한 용도로 쓰이는 오일로서 점도가 높고 무색에서 황갈색을 띈다. 피마자유 추출은 압착 착유 또는 용매 추출로 얻게 되며 본 실험에 사용된 오일은 압착 착유한 것으로 매우 진한 갈색을 띄는 정제전 오일을 이용하였다. 실험에 사용된 피마자유의 초기 산가는 1mgKOH/g 이하로 낮은 유리지방산 함량을 보였으며 수분은 0.3%로 전이에스테르화 반응을 위해서는 수분 증발이 필요했다. 피마자유의 바이오디젤 생산을 위해 진행된 물성 분석 항목은 산가, 수분, 인함량, 황함량, 점도, 고형물이며 원료유와 그 바이오디젤에 대해 각각 물성 분석을 실시하였다. 피마자유의 가장 큰 특징은 다른 식물성 오일과는 다르게 오일이 알코올에 녹는 특성이 있으며 이런 이유로 전이에스테르화 반응 후 바이오디젤과 글리세롤이 분리되지 않는 문제점을 갖고 있다. 피마자유를 이용해 제조한 바이오디젤, 즉 지방산메틸에스터의 함량을 분석한 결과 약 90%의 메틸에스터화 반응 전환율을 나타내었으나 국내외 품질규격상의 탄소수 C14~C24:0의 지방산 에스터(fatty acid methyl esters)로 검출되는 바이오디젤의 함량은 10% 미만으로 나타났으며 나머지 90%는 라이신올레익산메틸에스터(ricinoleic acid methyl ester)로 분석되었다. 따라서, 기존의 대두유, 유채유, 팜유, 폐식용유로부터 제조한 바이오디젤과 물성이 매우 상이하고 특히 끊는점(boiling point)과 점도가 높아 경유 대체연료로는 활용이 불가능할 것으로 판단된다. 하지만 기존의 다양한 용도의 오일로 사용하기 위해 정제하는 과정에서 전체 착유 오일중의 약 10%만을 선택적으로 분리하여 바이오디젤 원료로 활용하는 방안은 가능할 것으로 판단된다.

  • PDF

Study on free and bond glycerines in Biodiesel from PKO(Palm Kernel Oil) and coconut oil (PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구)

  • Lee, Don-Min;Park, Chun-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.348-361
    • /
    • 2015
  • To reduce the effects of greenhouse gas (GHG) emissions, the government has announced the special platform of technologies as parts of an effort to minimize global climate change, and the government distributed biodiesel since 2006 as the further efforts. Although there are some debates about some quality specifications and unbalanced of source (44% from palm oil), more than 400kton/year of biodiesel was produced in 2013. Moreover the amounts will be increased when the RFS is activated. To solve the unbalanced situation and to achieve the diversity of feeds, it is essential that many researches should be considered. Especially, free and bond glycerines are one of the important properties seriously affected to the combustion system in vehicle & cold properties. Previous method (KS M 2412) couldn't cover the biodiesel derived from lauric oil($C_{12:0}$) such as PKO (Palm Kernel Oil), Coconut oil because those compositions are lighter than other conventional biodiesel sources. In this study, we review the existed method and figure out the factors should improve to analysis the glycerine from PKO and Coconut oil biodiesel. Modifying the analysis conditions to enhance the resolution and change the internal standards to avoid the overlapped- peaks between Capric acid ME ($C_{10:0}$) and standard#1(1,2,4-butantriol). From this revised method, we could solve the restrictions of previous methods. And check the possibility of new method to analyze the glycerine in biodiesel regardless of sources.

Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production (Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오디젤 생산)

  • Choi, Jong-Doo;Kim, Deog-Keun;Park, Ji-Yeon;Rhee, Young-Woo;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.194-199
    • /
    • 2008
  • In this study, the effective method to esterify the free fatty acids in jatropha oil was examined. Compared to other plant oils, the acid value of jatropha oil was remarkably high, 11.5 mgKOH/g. So direct transesterification by a base catalyst was not suitable for the oil. After the free fatty acids were esterified with methanol, jatropha oil was transesterified. The activities of four solid acid catalysts were tested and Amberlyst-15 showed the best activity for the esterification. After constructing the experiment matrix based on RSM and analyzing the statistical data, the optimal esterification conditions were determined to be 6.79% of methanol and 17.14% of Amberlyst-15. After the pretreatment, jatropha biodiesel was produced by the transesterification using KOH in a pressurized batch reactor. Jatropha biodiesel produced could meet the major specifications of Korean biodiesel standards; 97.35% of FAME, 8.17 h of oxidation stability, 0.125% of total glycerol and $0^{\circ}C$ of CFPP.

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil (네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구)

  • Youngbin Kim;Seunghee Lee;Minseok Sim;Yehee Kim;Rajendra Joshi;Jong-Ki Jeon
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.