• Title/Summary/Keyword: 지발당 장약량(kg)

Search Result 6, Processing Time 0.018 seconds

A Study on the Blasting Vibration Characteristics of Geomunoreum Lava Tubes System, Jeju Island (제주 거문오름 용암동굴계에 영향을 미치는 발파진동특성에 대한 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Ahn, Ung-San;Lim, Hyun-Muk;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.103-118
    • /
    • 2021
  • For management and preservation measures of lava tube, it is studied how the blasting vibration by constructions near Geomunoreum lava tubes in Jeju affect lava tube. 11 boreholes were drilled in study area, and in-situ blasting tests were conducted by changing from 0.5 kg to 10 kg charge per delay in those boreholes. The vibration velocity, which meets the regulatory vibration criterion during daytime, was estimated as below 0.276 cm/sec by analyzing the relationship between vibration velocity and vibration level. In addition, SRE and CRE were calculated from the results of in-situ blasting tests, and k-values were shown as 130.04 in SRE, 199.71 in CRE, respectively. Also, n-values were shown as -1.717 in SRE, -1.711 in CRE, respectively. Charge per delay were assessed based on these equations, and charges per delay had ranges of 0.57~7.42 kg/delay in estimation equation of vibration velocity, 0.21~5.29 kg/delay in SRE, and 0.04~5.51 kg/delay in CRE, considering the 0.2 kine vibration criterion for cultural heritage and the 20~100 m distance from vibration source. Additionally, the relationships which meet the criteria of 0.2 kine, were calculated by combining CRE in this study with the result of previous study. Allowable charges per delay, which meet the criteria of 0.2 kine, were evaluated as 1.07 kg/delay in 50 m, 5.13 kg/delay in 100 m and 22.26 kg/delay in 200 m distances. These relationships for each vibration velocity are useful to deduce charge per delay for the ground near Geomunoreum lava tube.

A Case Study on the Borehole Blasting for Offering the Ground Vibration Source (지진동 Source 제공을 위한 시추공 발파 기술 사례)

  • 조영곤;김희도;조준호;함준호
    • Explosives and Blasting
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • 본 기술사례는 과학기술부가 주도하는 자연재해방재기술개발 국가중점연구사업 중 기상청주관의 기상지진기술개발사업의 한반도 지각속도 구조연구 과제 중 서산지역과 포항지역을 연결하는 200km 측선에서 2차원 지각구조를 밝히기 위한 지각규모 굴절파탐사의 지진동 source 제공을 위해 발파로 실시하였다. 본 연구를 위하여 국내에서는 거의 실행해 본 경우가 없는 지발당 장약량이 500~1000kg발파를 실시하였다. 200개의 계측지점에 지진동이 전달될 수 있도록 충분한 폭속을 가진 폭약과 외부의 충격과 우수한 기폭력, 시차가 정확한 비전기뇌관을 특수 제작하여 사용하였다. 시추공내로 유출되는 물에 의한 사압을 방지하기 위하여 폭약은 철관용기를 제작하여 벌크형태로 장약을 하여 발파를 하였다. 발파전 용기 밀폐 시험 및 용기제작 후 기폭실험, 수압작용으로 인한 폭약 및 뇌관에 미치는 영향 등을 실험을 통하여 사전 파악을 하였다. 또한 실제 발파 중 진동차를 측정한 결과 보안물건에 대한 진동치값은 미광무국식(USBM)을 이용하여 예측한 진동치보다 평균 180% 정도 높게 나타났다.

A Case Study on the Boring-Hole Blasting for Offering of the Ground Vibration Source (지진동 Source 제공을 위한 심부 시추공발파 기술사례)

  • 조영곤;김희도;조준호
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • This case study which is to make 2-Dimension earth's crust structures clearly is about the great boring-hole blasting to provide ground vibration source of the reflected wave research on the Korean Peninsula earth's crust structures research. For this study we've done blasting twice-500 ㎏/charge per delay, 1,000 ㎏/charge per delay, and the specifications of blasting are the following - dia.: 300 ㎜, boring-depth : 100m, besides, we used the explosives and electric detonators which have sufficient detonating velocity and very excellent safety, capacity of detonating, accurate delay time. We charged explosives into steel pipe with bulk type to avoid dead pressure by ground water. And then we tested about pipe airtight and blasting to certificate which has no problem by using on this study. In the results, we succeeded each blasting in Seosan, Youngdong. For the Peak Sum Vector(PSV) around the blasting at the main points, its real measured PSV is higher 180 % than estimated PSV with USBM. In this study we can't to be analysis of vibration velocity, but to be key providing vibration source.

A Case Study on the Boring-Hole Blasting for Offering of the Ground Vibration Source (지진동 Source 제공을 위한 시추공 발파 기술 사례)

  • 조영곤;김희도;조준호;함준호
    • Proceedings of the KSEG Conference
    • /
    • 2003.04a
    • /
    • pp.109-116
    • /
    • 2003
  • 본 기술사례는 과학기술부가 주도하는 자연재해방재기술개발 국가중점연구사업 중 기상청 주관의 기상지진기술개발사업의 한반도 지각속도 구조연구 과제 중 서산지역과 포항지역을 연결하는 200km 측선에서 2차원 지각구조를 밝히기 위한 지각규모 굴절파탐사의 지진동 source 제공을 위해 발파로 실시하였다. 본 연구를 위하여 국내에서는 거의 실행해 본 경우가 없는 지발당 장약량이 500~1000kg의 발파를 실시하였다. 200개의 계측지점에 지진동이 전달될 수 있도록 충분한 폭속을 가진 폭약과 외부의 충격과 우수한 기폭력, 시차가 정확한 이중비전기뇌관을 특수 제작하여 사용하였다. 시추공내로 유출되는 물에 의한 사압을 방지하기 위하여 폭약은 철관용기를 제작하여 벌크 형태로 장약을 하여 발파를 하였다. 발파전 용기 밀폐 시험 및 용기제작 후 기폭실험, 수압작용으로 인한 폭약 및 뇌관에 미치는 영향 등을 실험을 통하여 사전 파악을 하였다. 또한 실제 발파 중 진동치를 측정한 결과 보안물건에 대한 진동치값은 미광무국식(USBM)을 이용하여 예측한 진동치보다 평균 180% 정도 높게 나타났다.

  • PDF

A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area (도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구)

  • Jinuk Kwon;Naehyun Lee;Jeongha Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.84-98
    • /
    • 2024
  • This study proposed a prediction equation for the estimation of blasting vibaration and blasting noise, utilizing 320 datasets for the blasting vibration and blasting noise acquired during urban blasting works in the Incheon, Suwon, Wonju, and Yangsan regions. The proposed blasting vibration prediction equation, derived from regression analysis, indicated correlation coefficients of 0.879 and 0.890 for SRSD and CRSD, respectively, with an R2 value exceeding 0.7. In the case of the blasting noise prediction equation, stepwise regression analysis yielded a correlation coefficient of 0.911 between the prediction values and real measurements for the blasting nosie, and further analysis to determine the constant value revealed a correlation coefficient of 0.881, with an R2 value also exceeding 0.7. These results suggest the feasibility of applying the proposed prediction equations when environmental impact assessments or education environment evaluation according to urban development or apartment construction projects is performed.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ${\phi}70mm$ on the calcalious sand stone (soft -modelate -semi hard Rock). The total numbers of test blast were 88. Scale distance were induced 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ were V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum charge per delay-period of eight milliseconds or more (kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents where the quantity $\frac{D}{W^b}$ is known as the scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagorized in three groups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge Per delay Plots of peak particle velocity versus distoance were made on log-log coordinates. The data are grouped by test and P.P.V. The linear grouping of the data permits their representation by an equation of the form ; $V=K(\frac{D}{W^{\frac{1}{3}})^{-n}$ The value of K(41 or 124) and n(1.41 or 1.66) were determined for each set of data by the method of least squores. Statistical tests showed that a common slope, n, could be used for all data of a given components. Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m ------- under l00m ${\cdots\cdots\cdots}{\;}41(D/sqrt[2]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}A$ Over 100m ${\cdots\cdots\cdots\cdots\cdots}{\;}121(D/sqrt[3]{W})^{-1.66}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}B$ where ; V is peak particle velocity In cm / sec D is distance in m and W, maximLlm charge weight per day in kg K value on the above equation has to be more specified for further understaring about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF