• Title/Summary/Keyword: 지반 침하

Search Result 1,527, Processing Time 0.031 seconds

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

An Applicative Estimation of Safety Factors about Driven Pile Using the Results of Static Loading Test on the Ultimate State (극한상태의 정재하시험결과를 이용한 타입말뚝의 안전율 적용성 평가)

  • Ki, Wan-Seo;Park, Noh-Hwan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2009
  • This study estimated ultimate load by the determination methods based on ultimate load, yield load and settlement using experimental data from static load tests that applied load to driven piles used in sandy grounds at home and overseas until failure appeared markedly. Estimated ultimate load was normalized with actually measured failure load, and was compared among the determination methods according to the characteristics of pile. In addition, I have identified to the determination methods suitable for estimating ultimate load, and reevaluated the safety factor when determining allowable load. From the results of this study were drawn conclusions as follows. Among ultimate loads estimated by the ultimate-load-based determination methods, the value interpreted by Chin's method tended to overestimate actual measurements, and B. Hansen 80% standard and the stability plot method were considered most reliable as their results were closest to actual measurements. According to the results of this study, in calculating the allowable load, if the safety factor to be applied to failing load obtained by the method of determining extreme load is converted to the safety factor applied to the Standards for Structure Foundation Design, a value larger than 3.0 should be applied except the B. Hansen 90% method, and a value larger than 2.0 should be applied in the methods of determining yield load. In addition, if the safety factor to be applied to load obtained by the settlement standard is converted based on safety factor 3.0 for extreme load, a value smaller than 3.0 should be applied to the total settlement standard and the net settlement standard.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

Reinforcement of Collapsed Railway Subgrade and Line Capacity Increase Using Short Reinforcement with Rigid Wall (짧은 보강재와 일체형 강성벽체를 활용한 철도 붕괴노반 보강 및 선로용량 증대 기술)

  • Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.604-609
    • /
    • 2016
  • This study evaluated the long-term performance of RSR (Reinforced Subgrade for Railways) technology which increases the railway line capacity without the need for additional land. Its characteristics include the use of a short reinforcement with rigid wall, which make it possible to apply it in confined spaces. The 7m high and 40m long testbed employed to evaluate the long-term performance was designed and constructed near Jupo station on the Chang-hang line. This line, located close to a local bus route, had collapsed at the subgrade following heavy rainfall. The performance of the new type of subgrade was verified with long term measurements over a 2 year period including the surface and ground settlement, horizontal displacement of the wall, tensile strain of the reinforcement, and settlement of the rail top on the side track. Based on the results of the measurements made until now, we concluded that it had sufficient safety and serviceability for use as a railway subgrade. It is expected that RSR technology could be frequently used at sites which lack the necessary construction materials for an embankment and are located close to functional railway lines and boundaries, in order to settle civil complaints.

Slope Stability Analysis of Improved Wasted Mine Tailing Landfill Using Fine Recycled-Concrete Aggregates (폐콘크리트 재생잔골재를 활용한 개량 폐광미 매립지의 사면안정해석)

  • Ahn, Nam-Kyu;Kim, Tae-Hyung;Oh, Je-Ill;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • An extensive numerical analysis is carried out to investigate the slope stability of the wasted mine tailing landfill constructed by the utilization of fine recycled-concrete aggregates. To do this, first, the physical and mechanical properties of the fine recycled-concrete aggregates and the wasted mine tailing are investigated, and the settlement and the change of material properly of the fine recycled-concrete aggregates resulted from reaction with water are also examined. The $OH^-$ elution from the fine recycled-concrete aggregates reacted with water slightly causes the change of material properties such as porosity, permeability and waster absorption, but the settlement does not happen noticeably. The results of numerical analysis of the landfill slope built with wasted mine tailing and recycled-concrete aggregates in alternate layer indicate that slope stability increases with decreasing the slope ratio, with decreasing the groundwater level inside slope, and with increasing the depth of fine recycled-concrete aggregate layer. Based on this study, thus, engineers working in related to the wasted mine tailing landfill design and construction using the fine recycled-concrete aggregates should be considered the slope ratio, the groundwater level, the depth of fine recycled-concrete aggregate layer.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

Development of Water-resistant Grout according to Blast Furnace Slag Fine Powder and Calcium Hydroxide Content (고로슬래그 미분말과 수산화칼슘 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Park, Kyungho;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.541-555
    • /
    • 2020
  • The grouting method is used for reinforcing and waterproofing the soft ground, increasing the bearing capacity of structures damaged by lowering or subsidence due to rise and vibration, and for ordering. This study attempted to develop a blast furnace slag-based cementless grout material to increase the strength and hardening time of the grout material using reinforcing fibers. In this regard, in this study, it was used in combination with calcium hydroxide, which is an alkali stimulant of the three fine powders of blast furnace slag, and the content of calcium hydroxide was used by substituting 10, 20, and 30% of the fine powder of blast furnace slag. In addition, in order to compare the strength according to the presence or absence of reinforcing fibers, an experiment was performed by adding 0.5% of each fiber. As the content of carbon fibers and aramid fibers increased, the uniaxial compressive strength increased, and it was confirmed that the crosslinking action of the fibers in the grout material increased the uniaxial compressive strength. In addition, it was confirmed that the gel time sharply decreased as the content of the alkali stimulate increased.

Development of Alkali Stimulant-Based Reinforced Grouting Material from Blast Furnace Slag Powder (고로슬래그 미분말을 이용한 알칼리자극제 기반의 보강그라우트재 개발)

  • Seo, Hyeok;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Grouting is used for reinforcement and waterproofing of soft ground to increase its bearing capacity, reduce the impacts of rising or lowering groundwater levels, and reduce subsidence due to vibration and general causes. This study investigated the enhancement of grout strength and hardening time by the addition of reinforcing fibers, and the development of non-cement grouting materials from blast furnace slag. An experiment was performed to measure the increase in grout strength resulting from the addition of 0.5% increments of aramid and carbon reinforcing fibers. The results show that the uniaxial compressive strength of grout increases with increasing content of reinforcing fiber. Comparison of three admixtures of finely powdered blast furnace slag and 10%, 20%, and 30% calcium hydroxide stimulating agent showed that the uniaxial compressive strength of the mixture increases with increasing content of alkaline stimulant; however, the strength was lower than for 100% pure cement. The reaction of calcium hydroxide with blast furnace slag powder, which increases the strength of the grout, is more effective if injected as a solution rather than a powder.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF