• Title/Summary/Keyword: 지반 정보 시스템

Search Result 197, Processing Time 0.029 seconds

Assessment of Seismic Site Response at Hongseong in Korea Based on Two-dimensional Basin Modeling using Spatial Geotechnical Information (공간 지반 정보를 활용한 이차원 분지 모델링 기반의 국내 홍성 지역에서의 부지 지진 응답 평가)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • The site effects relating to the amplification of ground motion under earthquake loading are strongly influenced by both the subsurface soil condition and geologic structure. In this study, the site effects at the Hongseong area in Korea were examined by both the site investigation including borehole drilling and in-situ seismic tests and the site visit for acquiring geologic information of ground surface. Subsurface of Hongseong area with a major instrumental earthquake event in 1978 is composed of weathered layers of a maximum of 45 m thickness overlying bedrock. A geotechnical information system based on GIS framework was implemented to effectively find out spatial geologic structure of study area and it indicated Hongseong is a shallow and wide shaped basin. Two-dimensional finite element (FE) analyses for a representative cross-section of the Hongseong area were performed to evaluate seismic site responses. From the results of seismic responses, it was observed that the ground motions were amplified during the propagation of shear waves through the soil layer overlying the bedrock and the duration of shaking near the basin edges was prolonged due to the surface waves generated by interactions of shear waves with basin geometry. Furthermore, one-dimensional FE seismic response analyses were additionally conducted for soil sites selected in the basin, and it gives similar results to the two-dimensional seismic responses at most locations in the basin with the exception of the locations near the basin edges, because the basin in this study is very shallow and wide.

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

Cross-Validation of SPT-N Values in Pohang Ground Using Geostatistics and Surface Wave Multi-Channel Analysis (지구통계기법과 표면파 다중채널분석을 이용한 포항 지반의 SPT-N value 교차검증)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.393-405
    • /
    • 2020
  • Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF

A Development of Automated Monitoring Technique and Feedback Design System for Embankment on Soft Ground (연약지반 계측 정보관리 및 자동분석.재설계 시스템 개발)

  • 한영철;윤동덕;김주용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.103-108
    • /
    • 1999
  • This paper describes development of a new automated real-time system which preforms measurement data reduction and management, geotechnical backanalysis, and feedback design for embankment construction on soft ground. Such a system can be an effective, useful and economical tool for managing a large site development on soft ground. The system consists of data base system to characterize soil properties and identify instrumentation, analysis system for ground behavior and stability coupled with automatic monitoring system, and feedback design system which is a new technique to reflect the analysis of measured ground behavior against original design.

  • PDF

The Application of GPS (Global Positioning System) Technology into Geotechnical Information System with better Accuracy (지반정보시스템 정밀도 향상을 위한 GPS 기술의 국내 적용 사례 연구)

  • 김정한;황덕호;전해영;박성민;기창돈;장윤섭;윤서연;박형동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.297-302
    • /
    • 2000
  • This paper reports the application of GPS (Global Positioning System) technique into the geotechnical information system. Typical example of such application can be the database of logging data. Other examples can be found from the surveying for road work, excavation work, landslide mapping and image processing of slope face. This paper also reports the enhancement method of the accuracy. The results from this study confirms that GPS could be a powerful tool for the future geotechnical investigation works in Korea.

  • PDF

The development of statistical analysis module for the part of the new standardized geotechnical database computer program (복합공간 개발을 위한 지반정보 관리시스템의 통계분석 모듈 개발)

  • Kim, Jeong-Yeol;Kim, Hyun-Ki;Kim, Han-Saem;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.955-959
    • /
    • 2010
  • The statistical analysis module is developed for the part of the new standardized geotechnical database computer program. The purpose of this module is that the geotechnical engineers can optimize the underground construction process of the underdeveloped urban area rehabilitation by this module providing the statistical information for the geotechnical decision making and risk assessment. This module will be modified to offer the statistical information sustainable for the newly adapted geotechnical limit-state design methods.

  • PDF

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Construction Plan of 3D Cadastral Information System on Underground Space (지하공간 3차원 지적정보시스템 구축 방안 연구)

  • Song, Myungsoo;Lee, Sungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 2014
  • Recently, Construction business is changing from on the ground to underground space because of deficit of developing space, creation of green space and of incremental of land compensation expenses. Meanwhile, 3D Topographic, Marine and Cadastral maps need to have Spatial Interrelation. Also, understanding of the information is also needed. Spatial information object registration system is impossible to contact and understanding intelligence mutually because the former one is managed as automatic ID system. Therefore, 3D Object information ID System of underground space is managed based on Object Identifier. Construction of Spatial information integration ID System is required and it will offer Division Code (Ground, Index, Underground) and depth information. We are defined and classified Under Spatial Information in this paper. Moreover, we developed the integration ID System based on UFID for cadastral information Construction. We supposed underground spatial information DB Construction and a developed the way of exploiting 3D cadastral information system through the study. The research result will be the base data of Standard ID system, DB Construction and system Development of National spatial data which is considered together with spatial interrelation.

A Study on Construction and Utilization Plan of Underground Spatial Information DB for Earthquake Disaster Prevention (지진방재를 위한 지하공간정보 DB 구축 및 활용 방안 연구)

  • Kim, Soogyeom;Jang, Yonggu;Kim, Changkyu;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.49-56
    • /
    • 2013
  • Looking at the changes in the earthquake of 33 years of South Korea, earthquake in the magnitude of 3.0 or stronger have been conducted about nine times a year on average, and the epicenter of the earthquake is moving towards the inland from the coast. As the possibility of earthquakes increase, it is time to require utilization of underground space integrated information for earthquake disaster prevention. But, now the data related to the characterization of the ground and geology in the areas weak against earthquakes is insufficient, so we need to collect new geology and the ground survey data on nationwide scale and have to establish earthquake disaster prevention plans through the joint use of the existing underground space information. In this study, we determined the scope of construction of underground space DB information that is needed for earthquake disaster prevention, presented the construction plan of DB static and dynamic information of underground space. It also suggested the utilization of underground space scheme information for built earthquake disaster prevention. The underground space information for earthquake disaster prevention that was built through determining the scope and constructing, planning the utilization of underground space information is supposed to used as DB of the integrated management system of underground space and steep slopes information for steep slopes and earthquake prevention by Emergency Management Agency.